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Algebra and Topology

Abstract algebra
Abstract algebra is the subject area of mathematics that studies algebraic structures, such as groups, rings, fields,
modules, vector spaces, and algebras. The phrase abstract algebra was coined at the turn of the 20th century to
distinguish this area from what was normally referred to as algebra, the study of the rules for manipulating formulae
and algebraic expressions involving unknowns and real or complex numbers, often now called elementary algebra.
The distinction is rarely made in more recent writings.
Contemporary mathematics and mathematical physics make intensive use of abstract algebra; for example,
theoretical physics draws on Lie algebras. Subject areas such as algebraic number theory, algebraic topology, and
algebraic geometry apply algebraic methods to other areas of mathematics. Representation theory, roughly speaking,
takes the 'abstract' out of 'abstract algebra', studying the concrete side of a given structure; see model theory.
Two mathematical subject areas that study the properties of algebraic structures viewed as a whole are universal
algebra and category theory. Algebraic structures, together with the associated homomorphisms, form categories.
Category theory is a powerful formalism for studying and comparing different algebraic structures.

History and examples
As in other parts of mathematics, concrete problems and examples have played important roles in the development
of algebra. Through the end of the nineteenth century many, perhaps most of these problems were in some way
related to the theory of algebraic equations. Among major themes we can mention:
• solving of systems of linear equations, which led to matrices, determinants and linear algebra.
• attempts to find formulae for solutions of general polynomial equations of higher degree that resulted in discovery

of groups as abstract manifestations of symmetry;
• and arithmetical investigations of quadratic and higher degree forms and diophantine equations, notably, in

proving Fermat's last theorem, that directly produced the notions of a ring and ideal.
Numerous textbooks in abstract algebra start with axiomatic definitions of various algebraic structures and then
proceed to establish their properties, creating a false impression that somehow in algebra axioms had come first and
then served as a motivation and as a basis of further study. The true order of historical development was almost
exactly the opposite. Most theories that we now recognize as parts of algebra started as collections of disparate facts
from various branches of mathematics, acquired a common theme that served as a core around which various results
were grouped, and finally became unified on a basis of a common set of concepts. An archetypical example of this
progressive synthesis can be seen in the theory of groups.

Early group theory
There were several threads in the early development of group theory, in modern language loosely corresponding to
number theory, theory of equations, and geometry, of which we concentrate on the first two.
Leonhard Euler considered algebraic operations on numbers modulo an integer, modular arithmetic, proving his 
generalization of Fermat's little theorem. These investigations were taken much further by Carl Friedrich Gauss, who 
considered the structure of multiplicative groups of residues mod n and established many properties of cyclic and 
more general abelian groups that arise in this way. In his investigations of composition of binary quadratic forms, 
Gauss explicitly stated the associative law for the composition of forms, but like Euler before him, he seems to have
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been more interested in concrete results than in general theory. In 1870, Leopold Kronecker gave a definition of an
abelian group in the context of ideal class groups of a number field, a far-reaching generalization of Gauss's work. It
appears that he did not tie it with previous work on groups, in particular, permutation groups. In 1882 considering
the same question, Heinrich M. Weber realized the connection and gave a similar definition that involved the
cancellation property but omitted the existence of the inverse element, which was sufficient in his context (finite
groups).
Permutations were studied by Joseph Lagrange in his 1770 paper Réflexions sur la résolution algébrique des
équations devoted to solutions of algebraic equations, in which he introduced Lagrange resolvents. Lagrange's goal
was to understand why equations of third and fourth degree admit formulae for solutions, and he identified as key
objects permutations of the roots. An important novel step taken by Lagrange in this paper was the abstract view of
the roots, i.e. as symbols and not as numbers. However, he did not consider composition of permutations.
Serendipitously, the first edition of Edward Waring's Meditationes Algebraicae appeared in the same year, with an
expanded version published in 1782. Waring proved the main theorem on symmetric functions, and specially
considered the relation between the roots of a quartic equation and its resolvent cubic. Mémoire sur la résolution des
équations of Alexandre Vandermonde (1771) developed the theory of symmetric functions from a slightly different
angle, but like Lagrange, with the goal of understanding solvability of algebraic equations.

Kronecker claimed in 1888 that the study of modern algebra began with this first paper of Vandermonde.
Cauchy states quite clearly that Vandermonde had priority over Lagrange for this remarkable idea which
eventually led to the study of group theory. [1]

Paolo Ruffini was the first person to develop the theory of permutation groups, and like his predecessors, also in the
context of solving algebraic equations. His goal was to establish impossibility of algebraic solution to a general
algebraic equation of degree greater than four. En route to this goal he introduced the notion of the order of an
element of a group, conjugacy, the cycle decomposition of elements of permutation groups and the notions of
primitive and imprimitive and proved some important theorems relating these concepts, such as

if G is a subgroup of S5 whose order is divisible by 5 then G contains an element of order 5.
Note, however, that he got by without formalizing the concept of a group, or even of a permutation group. The next
step was taken by Évariste Galois in 1832, although his work remained unpublished until 1846, when he considered
for the first time what we now call the closure property of a group of permutations, which he expressed as

... if in such a group one has the substitutions S and T then one has the substitution ST.
The theory of permutation groups received further far-reaching development in the hands of Augustin Cauchy and
Camille Jordan, both through introduction of new concepts and, primarily, a great wealth of results about special
classes of permutation groups and even some general theorems. Among other things, Jordan defined a notion of
isomorphism, still in the context of permutation groups and, incidentally, it was he who put the term group in wide
use.
The abstract notion of a group appeared for the first time in Arthur Cayley's papers in 1854. Cayley realized that a
group need not be a permutation group (or even finite), and may instead consist of matrices, whose algebraic
properties, such as multiplication and inverses, he systematically investigated in succeeding years. Much later
Cayley would revisit the question whether abstract groups were more general than permutation groups, and establish
that, in fact, any group is isomorphic to a group of permutations.
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Modern algebra
The end of 19th and the beginning of the 20th century saw a tremendous shift in methodology of mathematics. No
longer satisfied with establishing properties of concrete objects, mathematicians started to turn their attention to
general theory. For example, results about various groups of permutations came to be seen as instances of general
theorems that concern a general notion of an abstract group. Questions of structure and classification of various
mathematical objects came to forefront. These processes were occurring throughout all of mathematics, but became
especially pronounced in algebra. Formal definition through primitive operations and axioms were proposed for
many basic algebraic structures, such as groups, rings, and fields. The algebraic investigations of general fields by
Ernst Steinitz and of commutative and then general rings by David Hilbert, Emil Artin and Emmy Noether, building
up on the work of Ernst Kummer, Leopold Kronecker and Richard Dedekind, who had considered ideals in
commutative rings, and of Georg Frobenius and Issai Schur, concerning representation theory of groups, came to
define abstract algebra. These developments of the last quarter of the 19th century and the first quarter of 20th
century were systematically exposed in Bartel van der Waerden's Moderne algebra, the two-volume monograph
published in 1930–1931 that forever changed for the mathematical world the meaning of the word algebra from the
theory of equations to the theory of algebraic structures.

An example
Abstract algebra facilitates the study of properties and patterns that seemingly disparate mathematical concepts have
in common. For example, consider the distinct operations of function composition, f(g(x)), and of matrix
multiplication, AB. These two operations have, in fact, the same structure. To see this, think about multiplying two
square matrices, AB, by a one column vector, x. This defines a function equivalent to composing Ay with Bx: Ay =
A(Bx) = (AB)x. Functions under composition and matrices under multiplication are examples of monoids. A set S and
a binary operation over S, denoted by concatenation, form a monoid if the operation associates, (ab)c = a(bc), and if
there exists an e∈S, such that ae = ea = a.

See also
• Universal algebra
• Coding theory
• Important publications in abstract algebra
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Set (mathematics)
A set is a collection of distinct objects, considered as an object in its own right. Sets are one of the most fundamental
concepts in mathematics. Although it was invented at the end of the 19th century, set theory is now a ubiquitous part
of mathematics, and can be used as a foundation from which nearly all of mathematics can be derived. In
mathematics education, elementary topics such as Venn diagrams are taught at a young age, while more advanced
concepts are taught as part of a university degree.

The intersection of two sets is made up of the
objects contained in both sets, shown in a Venn

diagram.

Definition

Georg Cantor, the founder of set theory, gave the following definition
of a set at the beginning of his Beiträge zur Begründung der
transfiniten Mengenlehre:[1]

By a "set" we mean any collection M into a whole of definite,
distinct objects m (which are called the "elements" of M) of our
perception [Anschauung] or of our thought.

The elements or members of a set can be anything: numbers, people,
letters of the alphabet, other sets, and so on. Sets are conventionally
denoted with capital letters. Sets A and B are equal if and only if they
have precisely the same elements.

As discussed below, in formal mathematics the definition given above turned out to be inadequate; instead, the
notion of a "set" is taken as an undefined primitive in axiomatic set theory, and its properties are defined by the
Zermelo–Fraenkel axioms. The most basic properties are that a set "has" elements, and that two sets are equal (one
and the same) if they have the same elements.
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Describing sets
There are two ways of describing, or specifying the members of, a set. One way is by intensional definition, using a
rule or semantic description:

A is the set whose members are the first four positive integers.
B is the set of colors of the French flag.

The second way is by extension – that is, listing each member of the set. An extensional definition is denoted by
enclosing the list of members in brackets:

C = {4, 2, 1, 3}
D = {blue, white, red}

Unlike a multiset, every element of a set must be unique; no two members may be identical. All set operations
preserve the property that each element of the set is unique. The order in which the elements of a set are listed is
irrelevant, unlike a sequence or tuple. For example,

{6, 11} = {11, 6} = {11, 11, 6, 11},
because the extensional specification means merely that each of the elements listed is a member of the set.
For sets with many elements, the enumeration of members can be abbreviated. For instance, the set of the first
thousand positive integers may be specified extensionally as:

{1, 2, 3, ..., 1000},
where the ellipsis ("...") indicates that the list continues in the obvious way. Ellipses may also be used where sets
have infinitely many members. Thus the set of positive even numbers can be written as {2, 4, 6, 8, ... }.
The notation with braces may also be used in an intensional specification of a set. In this usage, the braces have the
meaning "the set of all ...". So, E = {playing card suits} is the set whose four members are ♠, ♦, ♥, and ♣. A more
general form of this is set-builder notation, through which, for instance, the set F of the twenty smallest integers that
are four less than perfect squares can be denoted:

F = {n2 − 4 : n is an integer; and 0 ≤ n ≤ 19}
In this notation, the colon (":") means "such that", and the description can be interpreted as "F is the set of all
numbers of the form n2 − 4, such that n is a whole number in the range from 0 to 19 inclusive." Sometimes the
vertical bar ("|") is used instead of the colon.
One often has the choice of specifying a set intensionally or extensionally. In the examples above, for instance, A =
C and B = D.

Membership
The key relation between sets is membership – when one set is an element of another. If A is a member of B, this is
denoted A ∈ B, while if C is not a member of B then C ∉ A. For example, with respect to the sets A = {1,2,3,4}, B =
{blue, white, red}, and F = {n2 − 4 : n is an integer; and 0 ≤ n ≤ 19} defined above,

4 ∈ A and 285 ∈ F; but
9 ∉ F and green ∉ B.
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Subsets
If every member of set A is also a member of set B, then A is said to be a subset of B, written A ⊆ B (also pronounced
A is contained in B). Equivalently, we can write B ⊇ A, read as B is a superset of A, B includes A, or B contains A.
The relationship between sets established by ⊆ is called inclusion or containment.
If A is a subset of, but not equal to, B, then A is called a proper subset of B, written A ⊊ B (A is a proper subset of B)
or B ⊋ A (B is proper superset of A).
Note that the expressions A ⊂ B and A ⊃ B are used differently by different authors; some authors use them to mean
the same as A ⊆ B (respectively A ⊇ B), whereas other use them to mean the same as A ⊊ B (respectively A ⊋ B).

A is a subset of B

Example:
• The set of all men is a proper subset of the set of all people.
• {1, 3} ⊊ {1, 2, 3, 4}.
• {1, 2, 3, 4} ⊆ {1, 2, 3, 4}.

The empty set is a subset of every set and every set is a subset of itself:
• ∅ ⊆ A.
• A ⊆ A.

An obvious but useful identity, which can often be used to show that two seemingly different sets are equal:
• A = B if and only if A ⊆ B and B ⊆ A.

Power sets
The power set of a set S is the set of all subsets of S. This includes the subsets formed from all the members of S and
the empty set. If a finite set S has cardinality n then the power set of S has cardinality 2n. The power set can be
written as P(S).
If S is an infinite (either countable or uncountable) set then the power set of S is always uncountable. Moreover, if S
is a set, then there is never a bijection from S onto P(S). In other words, the power set of S is always strictly "bigger"
than S.
As an example, the power set P({1, 2, 3}) of {1, 2, 3} is {{1, 2, 3}, {1, 2}, {1, 3}, {2, 3}, {1}, {2}, {3}, ∅}. The
cardinality of the original set is 3, and the cardinality of the power set is 23 = 8. This relationship is one of the
reasons for the terminology power set. Similarly, its notation is an example of a general convention providing
notations for sets based on their cardinalities.
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Cardinality
The cardinality | S | of a set S is "the number of members of S." For example, since the French flag has three colors, |
B | = 3.
There is a unique set with no members and zero cardinality, which is called the empty set (or the null set) and is
denoted by the symbol ∅ (other notations are used; see empty set). For example, the set of all three-sided squares
has zero members and thus is the empty set. Though it may seem trivial, the empty set, like the number zero, is
important in mathematics; indeed, the existence of this set is one of the fundamental concepts of axiomatic set
theory.
Some sets have infinite cardinality. The set N of natural numbers, for instance, is infinite. Some infinite cardinalities
are greater than others. For instance, the set of real numbers has greater cardinality than the set of natural numbers.
However, it can be shown that the cardinality of (which is to say, the number of points on) a straight line is the same
as the cardinality of any segment of that line, of the entire plane, and indeed of any finite-dimensional Euclidean
space.

Special sets
There are some sets which hold great mathematical importance and are referred to with such regularity that they have
acquired special names and notational conventions to identify them. One of these is the empty set. Many of these sets
are represented using blackboard bold or bold typeface. Special sets of numbers include:
• P, denoting the set of all primes: P = {2, 3, 5, 7, 11, 13, 17, ...}.
• N, denoting the set of all natural numbers: N = {1, 2, 3, . . .}. (Sometimes N = {0, 1, 2, 3, ...}).
• Z, denoting the set of all integers (whether positive, negative or zero): Z = {... , −2, −1, 0, 1, 2, ...}.
• Q, denoting the set of all rational numbers (that is, the set of all proper and improper fractions): Q = {a/b : a, b ∈

Z, b ≠ 0}. For example, 1/4 = ∈ Q and 11/6 ∈ Q. All integers are in this set since every integer a can be expressed
as the fraction a/1.

• R, denoting the set of all real numbers. This set includes all rational numbers, together with all irrational numbers
(that is, numbers which cannot be rewritten as fractions, such as π, e, and √2.

• C, denoting the set of all complex numbers: C = {a + bi : a, b ∈ R}. For example, 1 + 2i ∈ C.
• H, denoting the set of all quaternions: H = {a + bi + cj + dk : a, b, c, d ∈ R}. For example, 1 + i + 2j − k ∈ H.
Each of the above sets of numbers has an infinite number of elements, and each can be considered to be a proper
subset of the sets listed below it. The primes are used less frequently than the others outside of number theory and
related fields.
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Basic operations
There are several fundamental operations for constructing new sets from given sets.

Unions

The union of A and B, denoted A ∪ B

Two sets can be "added" together. The union of A and B, denoted by
A ∪ B, is the set of all things which are members of either A or B.

Examples:
• {1, 2} ∪ {red, white} = {1, 2, red, white}.
• {1, 2, green} ∪ {red, white, green} = {1, 2, red, white, green}.
• {1, 2} ∪ {1, 2} = {1, 2}.

Some basic properties of unions:
• A ∪ B = B ∪ A.
• A ∪ (B ∪ C) = (A ∪ B) ∪ C.

• A ⊆ (A ∪ B).
• A ∪ A = A.
• A ∪ ∅ = A.
• A ⊆ B if and only if A ∪ B = B.

Intersections
A new set can also be constructed by determining which members two sets have "in common". The intersection of A
and B, denoted by A ∩ B, is the set of all things which are members of both A and B. If A ∩ B = ∅, then A and B are
said to be disjoint.

The intersection of A and B, denoted A ∩ B.

Examples:
• {1, 2} ∩ {red, white} = ∅.
• {1, 2, green} ∩ {red, white, green} = {green}.
• {1, 2} ∩ {1, 2} = {1, 2}.

Some basic properties of intersections:
• A ∩ B = B ∩ A.
• A ∩ (B ∩ C) = (A ∩ B) ∩ C.
• A ∩ B ⊆ A.
• A ∩ A = A.

• A ∩ ∅ = ∅.
• A ⊆ B if and only if A ∩ B = A.

http://en.wikipedia.org/w/index.php?title=File:Venn0111.svg
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Complements

The relative complementof B in A

The complement of A in U

The symmetric difference of A and B

Two sets can also be "subtracted". The relative complement of B in A
(also called the set-theoretic difference of A and B), denoted by A \ B,
(or A − B) is the set of all elements which are members of A but not
members of B. Note that it is valid to "subtract" members of a set that
are not in the set, such as removing the element green from the set {1,
2, 3}; doing so has no effect.

In certain settings all sets under discussion are considered to be subsets
of a given universal set U. In such cases, U \ A is called the absolute
complement or simply complement of A, and is denoted by A′.

Examples:
• {1, 2} \ {red, white} = {1, 2}.
• {1, 2, green} \ {red, white, green} = {1, 2}.
• {1, 2} \ {1, 2} = ∅.
• {1, 2, 3, 4} \ {1, 3} = {2, 4}.
• If U is the set of integers, E is the set of even integers, and O is

the set of odd integers, then E′ = O.

Some basic properties of complements:
• A \ B ≠ B \ A.
• A ∪ A′ = U.
• A ∩ A′ = ∅.
• (A′)′ = A.
• A \ A = ∅.
• U′ = ∅ and ∅′ = U.
• A \ B = A ∩ B′.

An extension of the complement is the symmetric difference, defined
for sets A, B as

For example, the symmetric difference of {7,8,9,10} and {9,10,11,12} is the set {7,8,11,12}.
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Cartesian product
A new set can be constructed by associating every element of one set with every element of another set. The
Cartesian product of two sets A and B, denoted by A × B is the set of all ordered pairs (a, b) such that a is a member
of A and b is a member of B.
Examples:

• {1, 2} × {red, white} = {(1, red), (1, white), (2, red), (2, white)}.
• {1, 2, green} × {red, white, green} = {(1, red), (1, white), (1, green), (2, red), (2, white), (2, green), (green,

red), (green, white), (green, green)}.
• {1, 2} × {1, 2} = {(1, 1), (1, 2), (2, 1), (2, 2)}.

Some basic properties of cartesian products:
• A × ∅ = ∅.
• A × (B ∪ C) = (A × B) ∪ (A × C).
• (A ∪ B) × C = (A × C) ∪ (B × C).

Let A and B be finite sets. Then
• | A × B | = | B × A | = | A | × | B |.

Applications
Set theory is seen as the foundation from which virtually all of mathematics can be derived. For example, structures
in abstract algebra, such as groups, fields and rings, are sets closed under one or more operations.
One of the main applications of naive set theory is constructing relations. A relation from a domain A to a codomain
B is a subset of the cartesian product A × B. Given this concept, we are quick to see that the set F of all ordered pairs
(x, x2), where x is real, is quite familiar. It has a domain set R and a codomain set that is also R, because the set of all
squares is subset of the set of all reals. If placed in functional notation, this relation becomes f(x) = x2. The reason
these two are equivalent is for any given value, y that the function is defined for, its corresponding ordered pair, (y,
y2) is a member of the set F.

Axiomatic set theory
Although initially naive set theory, which defines a set merely as any well-defined collection, was well accepted, it
soon ran into several obstacles. It was found that this definition spawned several paradoxes, most notably:
• Russell's paradox—It shows that the "set of all sets which do not contain themselves," i.e. the "set" { x : x is a set

and x ∉ x } does not exist.
• Cantor's paradox—It shows that "the set of all sets" cannot exist.
The reason is that the phrase well-defined is not very well defined. It was important to free set theory of these
paradoxes because nearly all of mathematics was being redefined in terms of set theory. In an attempt to avoid these
paradoxes, set theory was axiomatized based on first-order logic, and thus axiomatic set theory was born.
For most purposes however, naive set theory is still useful.
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See also
• Alternative set theory
• Axiomatic set theory
• Class (set theory)
• Dense set
• Family (mathematics)
• Fuzzy set
• Internal set
• Mathematical structure
• Multiset
• Naive set theory
• Rough set
• Russell's paradox
• Scientific classification
• Category of sets
• Taxonomy
• Tuple
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Binary operation
In mathematics, a binary operation is a calculation involving two operands, in other words, an operation whose
arity is two. Examples include the familiar arithmetic operations of addition, subtraction, multiplication and division.
More precisely, a binary operation on a set S is a binary relation that maps elements of the Cartesian product S × S to
S:

If f is not a function, but is instead a partial function, it is called a partial operation. For instance, division of real
numbers is a partial function, because one can't divide by zero: a/0 is not defined for any real a. Note however that
both in algebra and model theory the binary operations considered are defined on the whole of .
Sometimes, especially in computer science, the term is used for any binary function. That f takes values in the same
set S that provides its arguments is the property of closure.
Binary operations are the keystone of algebraic structures studied in abstract algebra: they form part of groups,
monoids, semigroups, rings, and more. Most generally, a magma is a set together with any binary operation defined
on it.
Many binary operations of interest in both algebra and formal logic are commutative or associative. Many also have
identity elements and inverse elements. Typical examples of binary operations are the addition (+) and multiplication
(×) of numbers and matrices as well as composition of functions on a single set.
An example of an operation that is not commutative is subtraction (−). Examples of partial operations that are not
commutative include division (/), exponentiation(^), and super-exponentiation(↑↑).
Binary operations are often written using infix notation such as a ∗ b, a + b, a · b or (by juxtaposition with no
symbol) ab rather than by functional notation of the form f(a, b). Powers are usually also written without operator,
but with the second argument as superscript.
Binary operations sometimes use prefix or postfix notation; this dispenses with parentheses. Prefix notation is also
called Polish notation; postfix notation, also called reverse Polish notation, is probably more often encountered.

Pair and tuple
A binary operation, ab, depends on the ordered pair (a, b) and so (ab)c (where the parentheses here mean first
operate on the ordered pair (a, b) and then operate on the result of that using the ordered pair ((ab), c)) depends in
general on the ordered pair ((a,b),c). Thus, for the general, non-associative case, binary operations can be represented
with binary trees.
However:
• If the operation is associative, (ab)c=a(bc), then the value depends only on the tuple (a,b,c).
• If the operation is commutative, ab=ba, then the value depends only on the multiset { {a,b},c}.
• If the operation is both associative and commutative then the value depends only on the multiset {a,b,c}.
• If the operation is both associative and commutative and idempotent, aa=a, then the value depends only on the set

{a,b,c}.
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External binary operations
An external binary operation is a binary function from K × S to S. This differs from a binary operation in the strict
sense in that K need not be S; its elements come from outside.
An example of an external binary operation is scalar multiplication in linear algebra. Here K is a field and S is a
vector space over that field.
An external binary operation may alternatively be viewed as an action; K is acting on S.
Note that the dot product of two vectors is not a binary operation, external or otherwise, as it maps from S × S to K,
where K is a field and S is a vector space over K.

See also
• Iterated binary operation
• Unary operation
• Ternary operation

Function composition

g ∘ f, the composition of f and g. For example, (g ∘ f)(c) = #.

In mathematics, function composition is the
application of one function to the results of another. For
instance, the functions f: X → Y and g: Y → Z can be
composed by computing the output of g when it has an
argument of f(x) instead of x. Intuitively, if z is a
function g of y and y is a function f of x, then z is a
function of x.

Thus one obtains a function g ∘ f: X → Z defined by (g
∘ f)(x) = g(f(x)) for all x in X. The notation g ∘ f is read
as "g circle f", or "g composed with f", "g after f", "g
following f", or just "g of f".

The composition of functions is always associative. That is, if f, g, and h are three functions with suitably chosen
domains and codomains, then f ∘ (g ∘ h) = (f ∘ g) ∘ h, where the parentheses serve to indicate that composition is to
be performed first for the parenthesized functions. Since there is no distinction between the choices of placement of
parentheses, they may be safely left off.

The functions g and f are said to commute with each other if g ∘ f = f ∘ g. In general, composition of functions will
not be commutative. Commutativity is a special property, attained only by particular functions, and often in special
circumstances. For example, only when . But a function always commutes with its
inverse to produce the identity mapping.
Considering functions as special cases of relations (namely functional relations), one can analogously define
composition of relations, which gives the formula for in terms of and

.
Derivatives of compositions involving differentiable functions can be found using the chain rule. Higher derivatives
of such functions are given by Faà di Bruno's formula.
The structures given by composition are axiomatized and generalized in category theory.
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Example
As an example, suppose that an airplane's elevation at time t is given by the function h(t) and that the oxygen
concentration at elevation x is given by the function c(x). Then (c ∘ h)(t) describes the oxygen concentration around
the plane at time t.

Functional powers
If then may compose with itself; this is sometimes denoted . Thus:

Repeated composition of a function with itself is called function iteration.

The functional powers for natural follow immediately.
• By convention,  the identity map on the domain of .
• If admits an inverse function, negative functional powers  are defined as the

opposite power of the inverse function, .
Note: If f takes its values in a ring (in particular for real or complex-valued f ), there is a risk of confusion, as f n

could also stand for the n-fold product of f, e.g. f 2(x) = f(x) · f(x).
(For trigonometric functions, usually the latter is meant, at least for positive exponents. For example, in
trigonometry, this superscript notation represents standard exponentiation when used with trigonometric functions:
sin2(x) = sin(x) · sin(x). However, for negative exponents (especially −1), it nevertheless usually refers to the inverse
function, e.g., tan−1 = arctan (≠ 1/tan).
In some cases, an expression for f in g(x) = f r(x) can be derived from the rule for g given non-integer values of r.
This is called fractional iteration. For instance, a half iterate of a function f is a function g satisfying g(g(x)) = f(x).
Another example would be that where f is the successor function, f r(x) = x + r. This idea can be generalized so that
the iteration count becomes a continuous parameter; in this case, such a system is called a flow.
Iterated functions and flows occur naturally in the study of fractals and dynamical systems.

Composition monoids
Suppose one has two (or more) functions f: X → X, g: X → X having the same domain and codomain. Then one can
form long, potentially complicated chains of these functions composed together, such as f ∘ f ∘ g ∘ f. Such long
chains have the algebraic structure of a monoid, called transformation monoid or composition monoid. In general,
composition monoids can have remarkably complicated structure. One particular notable example is the de Rham
curve. The set of all functions f: X → X is called the full transformation semigroup on X.
If the functions are bijective, then the set of all possible combinations of these functions forms a transformation
group; and one says that the group is generated by these functions.
The set of all bijective functions f: X → X form a group with respect to the composition operator. This is the
symmetric group, also sometimes called the composition group.
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Alternative notations
• Many mathematicians omit the composition symbol, writing gf for g ∘ f.
• In the mid-20th century, some mathematicians decided that writing "g ∘ f" to mean "first apply f, then apply g"

was too confusing and decided to change notations. They write "xf" for "f(x)" and "(xf)g" for "g(f(x))". This can be
more natural and seem simpler than writing functions on the left in some areas – in linear algebra, for instance,
where x is a row vector and f and g denote matrices and the composition is by matrix multiplication. This
alternative notation is called postfix notation. The order is important because matrix multiplication is
non-commutative. Successive transformations applying and composing to the right agrees with the left-to-right
reading sequence.

• Mathematicians who use postfix notation may write "fg", meaning first do f then do g, in keeping with the order
the symbols occur in postfix notation, thus making the notation "fg" ambiguous. Computer scientists may write
"f;g" for this, thereby disambiguating the order of composition. To distinguish the left composition operator from
a text semicolon, in the Z notation a fat semicolon ⨟ (U+2A1F) is used for left relation composition. Since all
functions are binary relations, it is correct to use the fat semicolon for function composition as well (see the article
on Composition of relations for further details on this notation).

Composition operator
Given a function g, the composition operator is defined as that operator which maps functions to functions as

Composition operators are studied in the field of operator theory.

See also
• Combinatory logic
• Composition of relations, the generalization to relations
• Function composition (computer science)
• Functional decomposition
• Higher-order function
• Lambda calculus

External links
• "Composition of Functions [1]" by Bruce Atwood, the Wolfram Demonstrations Project, 2007.
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[1] http:/ / demonstrations. wolfram. com/ CompositionOfFunctions/
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Bijection

A bijective function.

In mathematics, a bijection, or a bijective function is a function f
from a set X to a set Y with the property that, for every y in Y, there
is exactly one x in X such that f(x) = y and no unmapped element
exists in either X or Y.

Alternatively, f is bijective if it is a one-to-one correspondence
between those sets; i.e., both one-to-one (injective) and onto
(surjective). (One-to-one function means one-to-one
correspondence (i.e., bijection) to some authors, but injection to
others.)

For example, consider the function succ, defined from the set of
integers to , that to each integer x associates the integer
succ(x) = x + 1. For another example, consider the function sumdif
that to each pair (x,y) of real numbers associates the pair
sumdif(x,y) = (x + y, x − y).

A bijective function from a set to itself is also called a permutation.
The set of all bijections from X to Y is denoted as X ↔ Y. (Sometimes this notation is reserved for binary relations,
and bijections are denoted by X ⤖ Y instead.) Occasionally, the set of permutations of a single set X may be denoted
X!.

Bijective functions play a fundamental role in many areas of mathematics, for instance in the definition of
isomorphism (and related concepts such as homeomorphism and diffeomorphism), permutation group, projective
map, and many others.

Composition and inverses
A function f is bijective if and only if its inverse relation f −1 is a function. In that case, f −1 is also a bijection.
The composition g ∘ f of two bijections f: X ↔ Y and g: Y ↔ Z is a bijection. The inverse of g ∘ f is (g ∘ f)−1 = (f
−1) ∘ (g−1).

A bijection composed of an injection (left) and a surjection (right).

On the other hand, if the composition g ∘ f
of two functions is bijective, we can only
say that f is injective and g is surjective.

A relation f from X to Y is a bijective
function if and only if there exists another
relation g from Y to X such that g ∘ f is the
identity function on X, and f ∘ g is the
identity function on Y. Consequently, the
sets have the same cardinality.
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Bijections and cardinality
If X and Y are finite sets, then there exists a bijection between the two sets X and Y iff X and Y have the same number
of elements. Indeed, in axiomatic set theory, this is taken as the very definition of "same number of elements", and
generalising this definition to infinite sets leads to the concept of cardinal number, a way to distinguish the various
sizes of infinite sets.

Examples and counterexamples
• For any set X, the identity function idX from X to X, defined by idX(x) = x, is bijective.
• The function f from the real line R to R defined by f(x) = 2x + 1 is bijective, since for each y there is a unique x =

(y − 1)/2 such that f(x) = y.
• The exponential function g : R  R, with g(x) = ex, is not bijective: for instance, there is no x in R such that g(x)

= −1, showing that g is not surjective. However if the codomain is changed to be the positive real numbers R+ =
(0,+∞), then g becomes bijective; its inverse is the natural logarithm function ln.

• The function h : R → [0,+∞) with h(x) = x² is not bijective: for instance, h(−1) = h(+1) = 1, showing that h is not
injective. However, if the domain too is changed to [0,+∞), then h becomes bijective; its inverse is the positive
square root function.

• is not a bijection because −1, 0, and +1 are all in the domain
and all map to 0.

• is not a bijection because π/3 and 2π/3 are both in the domain and both map to
(√3)/2.

Properties
• A function f from the real line R to R is bijective if and only if its plot is intersected by any horizontal or vertical

line at exactly one point.
• If X is a set, then the bijective functions from X to itself, together with the operation of functional composition (∘),

form a group, the symmetric group of X, which is denoted variously by S(X), SX, or X! (the last reads "X
factorial").

• For a subset A of the domain with cardinality |A| and subset B of the codomain with cardinality |B|, one has the
following equalities:

|f(A)| = |A| and |f−1(B)| = |B|.
• If X and Y are finite sets with the same cardinality, and f: X → Y, then the following are equivalent:

1. f is a bijection.
2. f is a surjection.
3. f is an injection.

• At least for a finite set S, there is a bijection between the set of possible total orderings of the elements and the set
of bijections from S to S. That is to say, the number of permutations of elements of S is the same as the number of
total orderings of that set -- namely, n!.
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Bijections and category theory
Formally, bijections are precisely the isomorphisms in the category Set of sets and functions. However, the
bijections are not always the isomorphisms. For example, in the category Top of topological spaces and continuous
functions, the isomorphisms must be homeomorphisms in addition to being bijections.

See also
• Category theory
• Injective function
• Symmetric group
• Surjective function
• Bijective numeration
• Bijective proof

External links
• Earliest Uses of Some of the Words of Mathematics: entry on Injection, Surjection and Bijection has the history

of Injection and related terms. [1]

References
[1] http:/ / jeff560. tripod. com/ i. html

Associativity
In mathematics, associativity is a property that a binary operation can have. It means that, within an expression
containing two or more occurrences in a row of the same associative operator, the order in which the operations are
performed does not matter as long as the sequence of the operands is not changed. That is, rearranging the
parentheses in such an expression will not change its value. Consider for instance the equation

Even though the parentheses were rearranged (the left side requires adding 5 and 2 first, then adding 1 to the result,
whereas the right side requires adding 2 and 1 first, then 5), the value of the expression was not altered. Since this
holds true when performing addition on any real numbers, we say that "addition of real numbers is an associative
operation."
Associativity is not to be confused with commutativity. Commutativity justifies changing the order or sequence of
the operands within an expression while associativity does not. For example,

is an example of associativity because the parentheses were changed (and consequently the order of operations
during evaluation) while the operands 5, 2, and 1 appeared in the exact same order from left to right in the
expression.

is not an example of associativity because the operand sequence changed when the 2 and 5 switched places.
Associative operations are abundant in mathematics; in fact, many algebraic structures (such as semigroups and
categories) explicitly require their binary operations to be associative.
However, many important and interesting operations are non-associative; one common example would be the vector
cross product.
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Definition
Formally, a binary operation on a set S is called associative if it satisfies the associative law:

Using * to denote a binary operation performed on a set

An example of multiplicative associativity

The evaluation order does not affect the value of such expressions, and it can be shown that the same holds for
expressions containing any number of operations. Thus, when is associative, the evaluation order can therefore
be left unspecified without causing ambiguity, by omitting the parentheses and writing simply:

However, it is important to remember that changing the order of operations does not involve or permit moving the
operands around within the expression; the sequence of operands is always unchanged.
A very different perspective is obtained by rephrasing associativity using functional notation:

: when expressed in this form, associativity becomes less obvious.
Associativity can be generalized to n-ary operations. Ternary associativity is (abc)de = a(bcd)e = ab(cde), i.e. the
string abcde with any three adjacent elements bracketed. N-ary associativity is a string of length n+(n-1) with any n
adjacent elements bracketed[1] .

Examples
Some examples of associative operations include the following.
• The prototypical example of an associative operation is string concatenation: the concatenation of "hello", ", ",

"world" can be computed by concatenating the first two strings (giving "hello, ") and appending the third string
("world"), or by joining the second and third string (giving ", world") and concatenating the first string ("hello")
with the result.

• In arithmetic, addition and multiplication of real numbers are associative; i.e.,

• Addition and multiplication of complex numbers and quaternions is associative. Addition of octonions is also
associative, but multiplication of octonions is non-associative.

• The greatest common divisor and least common multiple functions act associatively.

• Because linear transformations are functions that can be represented by matrices with matrix multiplication being
the representation of functional composition, one can immediately conclude that matrix multiplication is
associative.

• Taking the intersection or the union of sets:

• If M is some set and S denotes the set of all functions from M to M, then the operation of functional composition
on S is associative:

• Slightly more generally, given four sets M, N, P and Q, with h: M to N, g: N to P, and f: P to Q, then
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as before. In short, composition of maps is always associative.
• Consider a set with three elements, A, B, and C. The following operation:

+

× A B C

A A A A

B A B C

C A A A

is associative. Thus, for example, A(BC)=(AB)C. This mapping is not commutative.

Non-associativity
A binary operation on a set S that does not satisfy the associative law is called non-associative. Symbolically,

For such an operation the order of evaluation does matter. For example:
• Subtraction

• division

• Exponentiation

Also note that infinite sums are not generally associative, for example:

whereas

The study of non-associative structures arises from reasons somewhat different from the mainstream of classical
algebra. One area within non-associative algebra that has grown very large is that of Lie algebras. There the
associative law is replaced by the Jacobi identity. Lie algebras abstract the essential nature of infinitesimal
transformations, and have become ubiquitous in mathematics. They are an example of non-associative algebras.
There are other specific types of non-associative structures that have been studied in depth. They tend to come from
some specific applications. Some of these arise in combinatorial mathematics. Other examples: Quasigroup,
Quasifield, Nonassociative ring.
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Notation for non-associative operations
In general, parentheses must be used to indicate the order of evaluation if a non-associative operation appears more
than once in an expression. However, mathematicians agree on a particular order of evaluation for several common
non-associative operations. This is simply a notational convention to avoid parentheses.
A left-associative operation is a non-associative operation that is conventionally evaluated from left to right, i.e.,

while a right-associative operation is conventionally evaluated from right to left:

Both left-associative and right-associative operations occur. Left-associative operations include the following:
• Subtraction and division of real numbers:

• Function application:

This notation can be motivated by the currying isomorphism.
Right-associative operations include the following:
• Exponentiation of real numbers:

The reason exponentiation is right-associative is that a repeated left-associative exponentiation operation
would be less useful. Multiple appearances could (and would) be rewritten with multiplication:

• Function definition

Using right-associative notation for these operations can be motivated by the Curry-Howard correspondence
and by the currying isomorphism.

Non-associative operations for which no conventional evaluation order is defined include the following.
• Taking the pairwise average of real numbers:

• Taking the relative complement of sets:
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The green part in the left Venn diagram represents . The green part in the right Venn diagram
represents .

See also
• Light's associativity test
• A semigroup is a set with a closed associative binary operation.
• Commutativity and distributivity are two other frequently discussed properties of binary operations.
• Power associativity and alternativity are weak forms of associativity.

References
[1] Dudek, W.A. (2001), "On some old problems in n-ary groups" (http:/ / www. quasigroups. eu/ contents/ contents8. php?m=trzeci),

Quasigroups and Related Systems 8: 15–36, .

Group (mathematics)

The possible manipulations of this Rubik's Cube
form a group.

In mathematics, a group is an algebraic structure consisting of a set
together with an operation that combines any two of its elements to
form a third element. To qualify as a group, the set and the operation
must satisfy a few conditions called group axioms, namely closure,
associativity, identity and invertibility. While these are familiar from
many mathematical structures, such as number systems—for example,
the integers endowed with the addition operation form a group—the
formulation of the axioms is detached from the concrete nature of the
group and its operation. This allows one to handle entities of very
different mathematical origins in a flexible way, while retaining
essential structural aspects of many objects in abstract algebra and
beyond. The ubiquity of groups in numerous areas—both within and
outside mathematics—makes them a central organizing principle of
contemporary mathematics.[1] [2]

Groups share a fundamental kinship with the notion of symmetry. A symmetry group encodes symmetry features of
a geometrical object: it consists of the set of transformations that leave the object unchanged, and the operation of
combining two such transformations by performing one after the other. Such symmetry groups, particularly the
continuous Lie groups, play an important role in many academic disciplines. Matrix groups, for example, can be
used to understand fundamental physical laws underlying special relativity and symmetry phenomena in molecular
chemistry.

The concept of a group arose from the study of polynomial equations, starting with Évariste Galois in the 1830s. 
After contributions from other fields such as number theory and geometry, the group notion was generalized and
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firmly established around 1870. Modern group theory—a very active mathematical discipline—studies groups in
their own right.a[›] To explore groups, mathematicians have devised various notions to break groups into smaller,
better-understandable pieces, such as subgroups, quotient groups and simple groups. In addition to their abstract
properties, group theorists also study the different ways in which a group can be expressed concretely (its group
representations), both from a theoretical and a computational point of view. A particularly rich theory has been
developed for finite groups, which culminated with the monumental classification of finite simple groups completed
in 1983. Since the mid-1980s, geometric group theory, which studies finitely generated groups as geometric objects,
has become a particularly active area in group theory.

Definition and illustration

First example: the integers
One of the most familiar groups is the set of integers Z which consists of the numbers

..., −4, −3, −2, −1, 0, 1, 2, 3, 4, ...[3]

The following properties of integer addition serve as a model for the abstract group axioms given in the definition
below.
1. For any two integers a and b, the sum a + b is also an integer. In other words, the process of adding integers two

at a time can never yield a result that is not an integer. This property is known as closure under addition.
2. For all integers a, b and c, (a + b) + c = a + (b + c). Expressed in words, adding a to b first, and then adding the

result to c gives the same final result as adding a to the sum of b and c, a property known as associativity.
3. If a is any integer, then 0 + a = a + 0 = a. Zero is called the identity element of addition because adding it to any

integer returns the same integer.
4. For every integer a, there is an integer b such that a + b = b + a = 0. The integer b is called the inverse element of

the integer a and is denoted −a.

Definition
The integers, together with the operation "+", form a mathematical object belonging to a broad class sharing similar
structural aspects. To appropriately understand these structures without dealing with every concrete case separately,
the following abstract definition is developed to encompass the above example along with many others, one of which
is the symmetry group detailed below.
A group is a set, G, together with an operation "•" that combines any two elements a and b to form another element
denoted a • b. The symbol "•" is a general placeholder for a concretely given operation, such as the addition above.
To qualify as a group, the set and operation, (G, •), must satisfy four requirements known as the group axioms:[4]

Closure
For all a, b in G, the result of the operation a • b is also in G.b[›]

Associativity
For all a, b and c in G, the equation (a • b) • c = a • (b • c) holds.

Identity element
There exists an element e in G, such that for every element a in G, the equation e • a = a • e = a holds.

Inverse element
For each a in G, there exists an element b in G such that a • b = b • a = e, where e is the identity element.

The order in which the group operation is carried out can be significant. In other words, the result of combining
element a with element b need not yield the same result as combining element b with element a; the equation

a • b = b • a
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may not always be true. This equation does always hold in the group of integers under addition, because a + b = b +
a for any two integers (commutativity of addition). However, it does not always hold in the symmetry group below.
Groups for which the equation a • b = b • a always holds are called abelian (in honor of Niels Abel). Thus, the
integer addition group is abelian, but the following symmetry group is not.

Second example: a symmetry group
The symmetries (i.e., rotations and reflections) of a square form a group called a dihedral group, and denoted D4.[5]

The following symmetries occur:

id (keeping it as is) r1 (rotation by 90° right) r2 (rotation by 180° right) r3 (rotation by 270° right)

fv (vertical flip) fh (horizontal flip) fd (diagonal flip) fc (counter-diagonal flip)
The elements of the symmetry group of the square (D4). The vertices are colored and numbered only to visualize the operations.

• the identity operation leaving everything unchanged, denoted id;
• rotations of the square by 90° right, 180° right, and 270° right, denoted by r1, r2 and r3, respectively;
• reflections about the vertical and horizontal middle line (fh and fv), or through the two diagonals (fd and fc).

Any two symmetries a and b can be composed; i.e., applied one after another. The result of performing first a and
then b is written symbolically from right to left as

b • a ("apply the symmetry b after performing the symmetry a". The right-to-left notation stems from
composition of functions).

The group table on the right lists the results of all such compositions possible. For example, rotating by 270° right
(r3) and then flipping horizontally (fh) is the same as performing a reflection along the diagonal (fd). Using the above
symbols, highlighted in blue in the group table:

fh • r3 = fd.

Group table of D4

• id r
1

r
2

r
3

f
v

f
h

f
d

f
c

id id r1 r2 r3 fv fh fd fc

r
1

r1 r2 r3 id fc fd fv fh

r
2

r2 r3 id r1 fh fv fc fd

r
3

r3 id r1 r2 fd fc fh fv

f
v

fv fd fh fc id r2 r1 r3

f
h

fh fc fv fd r2 id r3 r1

f
d

fd fh fc fv r3 r1 id r2

f
c

fc fv fd fh r1 r3 r2 id
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The elements id, r1, r2, and r3 form a subgroup, highlighted in red (upper left region). A left and right coset of this subgroup is highlighted in green
(in the last row) and yellow (last column), respectively.

Given this set of symmetries and the described operation, the group axioms can be understood as follows:
1. The closure axiom demands that the composition b • a of any two symmetries a and b is also a symmetry.

Another example for the group operation is
r3 • fh = fc,

i.e. rotating 270° right after flipping horizontally equals flipping along the counter-diagonal (fc). Indeed every
other combination of two symmetries still gives a symmetry, as can be checked using the group table.

2. The associativity constraint deals with composing more than two symmetries: given three elements a, b and c of
D4, there are two possible ways of computing "a then b then c". The requirement

(a • b) • c = a • (b • c)
means that the composition of the three elements is independent of the priority of the operations, i.e. composing
first a after b, and c to the result a • b thereof amounts to performing a after the composition of b and c. For
example, (fd • fv) • r2 = fd • (fv • r2) can be checked using the group table at the right

(fd • fv) •
r2

= r3 •
r2

= r1, which equals

fd • (fv • r2) = fd •
fh

= r1.

3. The identity element is the symmetry id leaving everything unchanged: for any symmetry a, performing id after a
(or a after id) equals a, in symbolic form,

id • a = a,
a • id = a.

4. An inverse element undoes the transformation of some other element. Every symmetry can be undone: each of
transformations—identity id, the flips fh, fv, fd, fc and the 180° rotation r2—is its own inverse, because performing
each one twice brings the square back to its original orientation. The rotations r3 and r1 are each other's inverse,
because rotating one way and then by the same angle the other way leaves the square unchanged. In symbols,

fh • fh = id,
r3 • r1 = r1 • r3 = id.

In contrast to the group of integers above, where the order of the operation is irrelevant, it does matter in D4: fh • r1 =
fc but r1 • fh = fd. In other words, D4 is not abelian, which makes the group structure more difficult than the integers
introduced first.

History
The modern concept of an abstract group developed out of several fields of mathematics.[6] [7] [8] The original
motivation for group theory was the quest for solutions of polynomial equations of degree higher than 4. The
19th-century French mathematician Évariste Galois, extending prior work of Paolo Ruffini and Joseph-Louis
Lagrange, gave a criterion for the solvability of a particular polynomial equation in terms of the symmetry group of
its roots (solutions). The elements of such a Galois group correspond to certain permutations of the roots. At first,
Galois' ideas were rejected by his contemporaries, and published only posthumously.[9] [10] More general
permutation groups were investigated in particular by Augustin Louis Cauchy. Arthur Cayley's On the theory of
groups, as depending on the symbolic equation θn = 1 (1854) gives the first abstract definition of a finite group.[11]

Geometry was a second field in which groups were used systematically, especially symmetry groups as part of Felix 
Klein's 1872 Erlangen program.[12] After novel geometries such as hyperbolic and projective geometry had emerged,
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Klein used group theory to organize them in a more coherent way. Further advancing these ideas, Sophus Lie
founded the study of Lie groups in 1884.[13]

The third field contributing to group theory was number theory. Certain abelian group structures had been used
implicitly in Carl Friedrich Gauss' number-theoretical work Disquisitiones Arithmeticae (1798), and more explicitly
by Leopold Kronecker.[14] In 1847, Ernst Kummer led early attempts to prove Fermat's Last Theorem to a climax by
developing groups describing factorization into prime numbers.[15]

The convergence of these various sources into a uniform theory of groups started with Camille Jordan's Traité des
substitutions et des équations algébriques (1870).[16] Walther von Dyck (1882) gave the first statement of the
modern definition of an abstract group.[17] As of the 20th century, groups gained wide recognition by the pioneering
work of Ferdinand Georg Frobenius and William Burnside, who worked on representation theory of finite groups,
Richard Brauer's modular representation theory and Issai Schur's papers.[18] The theory of Lie groups, and more
generally locally compact groups was pushed by Hermann Weyl, Élie Cartan and many others.[19] Its algebraic
counterpart, the theory of algebraic groups, was first shaped by Claude Chevalley (from the late 1930s) and later by
pivotal work of Armand Borel and Jacques Tits.[20]

The University of Chicago's 1960–61 Group Theory Year brought together group theorists such as Daniel
Gorenstein, John G. Thompson and Walter Feit, laying the foundation of a collaboration that, with input from
numerous other mathematicians, classified all finite simple groups in 1982. This project exceeded previous
mathematical endeavours by its sheer size, in both length of proof and number of researchers. Research is ongoing to
simplify the proof of this classification.[21] These days, group theory is still a highly active mathematical branch
crucially impacting many other fields.a[›]

Elementary consequences of the group axioms
Basic facts about all groups that can be obtained directly from the group axioms are commonly subsumed under
elementary group theory.[22] For example, repeated applications of the associativity axiom show that the
unambiguity of

a • b • c = (a • b) • c = a • (b • c)
generalizes to more than three factors. Because this implies that parentheses can be inserted anywhere within such a
series of terms, parentheses are usually omitted.[23]

The axioms may be weakened to assert only the existence of a left identity and left inverses. Both can be shown to be
actually two-sided, so the resulting definition is equivalent to the one given above.[24]

Uniqueness of identity element and inverses
Two important consequences of the group axioms are the uniqueness of the identity element and the uniqueness of
inverse elements. There can be only one identity element in a group, and each element in a group has exactly one
inverse element. Thus, it is customary to speak of the identity, and the inverse of an element.[25]

To prove the uniqueness of an inverse element of a, suppose that a has two inverses, denoted l and r. Then
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l = l • e as e is the identity element

= l • (a •
r)

because r is an inverse of a, so e = a • r

= (l • a) •
r

by associativity, which allows to rearrange the
parentheses

= e • r since l is an inverse of a, i.e. l • a = e

= r for e is the identity element

Hence the two extremal terms l and r are connected by a chain of equalities, so they agree. In other words there is
only one inverse element of a.

Division
In groups, it is possible to perform division: given elements a and b of the group G, there is exactly one solution x in
G to the equation x • a = b.[25] In fact, right multiplication of the equation by a−1 gives the solution x = x • a • a−1 = b
• a−1. Similarly there is exactly one solution y in G to the equation a • y = b, namely y = a−1 • b. In general, x and y
need not agree.

Basic concepts
To understand groups beyond the level of mere symbolic manipulations as above, more structural concepts have to
be employed.c[›] There is a conceptual principle underlying all of the following notions: to take advantage of the
structure offered by groups (which sets, being "structureless", don't have), constructions related to groups have to be
compatible with the group operation. This compatibility manifests itself in the following notions in various ways.
For example, groups can be related to each other via functions called group homomorphisms. By the mentioned
principle, they are required to respect the group structures in a precise sense. The structure of groups can also be
understood by breaking them into pieces called subgroups and quotient groups. The principle of "preserving
structures"—a recurring topic in mathematics throughout—is an instance of working in a category, in this case the
category of groups.[26]

Group homomorphisms
Group homomorphismsg[›] are functions that preserve group structure. A function a: G → H between two groups is a
homomorphism if the equation

a(g • k) = a(g) • a(k).
holds for all elements g, k in G, i.e. the result is the same when performing the group operation after or before
applying the map a. This requirement ensures that a(1G) = 1H, and also a(g)−1 = a(g−1) for all g in G. Thus a group
homomorphism respects all the structure of G provided by the group axioms.[27]

Two groups G and H are called isomorphic if there exist group homomorphisms a: G → H and b: H → G, such that
applying the two functions one after another (in each of the two possible orders) equal the identity function of G and
H, respectively. That is, a(b(h)) = h and b(a(g)) = g for any g in G and h in H. From an abstract point of view,
isomorphic groups carry the same information. For example, proving that g • g = 1 for some element g of G is
equivalent to proving that a(g) • a(g) = 1, because applying a to the first equality yields the second, and applying b to
the second gives back the first.
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Subgroups
Informally, a subgroup is a group H contained within a bigger one, G.[28] Concretely, the identity element of G is
contained in H, and whenever h1 and h2 are in H, then so are h1 • h2 and h1

−1, so the elements of H, equipped with
the group operation on G restricted to H, form indeed a group.
In the example above, the identity and the rotations constitute a subgroup R = {id, r1, r2, r3}, highlighted in red in the
group table above: any two rotations composed are still a rotation, and a rotation can be undone by (i.e. is inverse to)
the complementary rotations 270° for 90°, 180° for 180°, and 90° for 270° (note that rotation in the opposite
direction is not defined). The subgroup test is a necessary and sufficient condition for a subset H of a group G to be a
subgroup: it is sufficient to check that g−1h ∈ H for all elements g, h ∈ H. Knowing the subgroups is important in
understanding the group as a whole.d[›]

Given any subset S of a group G, the subgroup generated by S consists of products of elements of S and their
inverses. It is the smallest subgroup of G containing S.[29] In the introductory example above, the subgroup generated
by r2 and fv consists of these two elements, the identity element id and fh = fv • r2. Again, this is a subgroup, because
combining any two of these four elements or their inverses (which are, in this particular case, these same elements)
yields an element of this subgroup.

Cosets
In many situations it is desirable to consider two group elements the same if they differ by an element of a given
subgroup. For example, in D4 above, once a flip is performed, the square never gets back to the r2 configuration by
just applying the rotation operations (and no further flips), i.e. the rotation operations are irrelevant to the question
whether a flip has been performed. Cosets are used to formalize this insight: a subgroup H defines left and right
cosets, which can be thought of as translations of H by arbitrary group elements g. In symbolic terms, the left and
right coset of H containing g are

gH = {gh, h ∈ H} and Hg = {hg, h ∈ H}, respectively.[30]

The cosets of any subgroup H form a partition of G; that is, the union of all left cosets is equal to G and two left
cosets are either equal or have an empty intersection.[31] The first case g1H = g2H happens precisely when g1

−1g2 ∈
H, i.e. if the two elements differ by an element of H. Similar considerations apply to the right cosets of H. The left
and right cosets of H may or may not be equal. If they are, i.e. for all g in G, gH = Hg, then H is said to be a normal
subgroup. One may then simply refer to N as the set of cosets.
In D4, the introductory symmetry group, the left cosets gR of the subgroup R consisting of the rotations are either
equal to R, if g is an element of R itself, or otherwise equal to U = fvR = {fv, fd, fh, fc} (highlighted in green). The
subgroup R is also normal, because fvR = U = Rfv and similarly for any element other than fv.

Quotient groups
In addition to disregarding the internal structure of a subgroup by considering its cosets, it is desirable to endow this
coarser entity with a group law called quotient group or factor group. For this to be possible, the subgroup has to be
normal. Given any normal subgroup N, the quotient group is defined by

G / N = {gN, g ∈ G}, "G modulo N".[32]

This set inherits a group operation (sometimes called coset multiplication, or coset addition) from the original group
G: (gN) • (hN) = (gh)N for all g and h in G. This definition is motivated by the idea (itself an instance of general
structural considerations outlined above) that the map G → G / N that associates to any element g its coset gN be a
group homomorphism, or by general abstract considerations called universal properties. The coset eN = N serves as
the identity in this group, and the inverse of gN in the quotient group is (gN)−1 = (g−1)N.e[›]
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• R U

R R U

U U R

Group table of the quotient group D4 /
R.

The elements of the quotient group D4 / R are R itself, which represents the identity, and U = fvR. The group
operation on the quotient is shown at the right. For example, U • U = fvR • fvR = (fv • fv)R = R. Both the subgroup R
= {id, r1, r2, r3}, as well as the corresponding quotient are abelian, whereas D4 is not abelian. Building bigger groups
by smaller ones, such as D4 from its subgroup R and the quotient D4 / R is abstracted by a notion called semidirect
product.
Quotient and subgroups together form a way of describing every group by its presentation: any group is the quotient
of the free group over the generators of the group, quotiented by the subgroup of relations. The dihedral group D4,
for example, can be generated by two elements r and f (for example, r = r1, the right rotation and f = fv the vertical
(or any other) flip), which means that every symmetry of the square is a finite composition of these two symmetries
or their inverses. Together with the relations

r 4 = f 2 = (rf)2 = 1,[33]

the group is completely described. A presentation of a group can also be used to construct the Cayley graph, a device
used to graphically capture discrete groups.
Sub- and quotient groups are related in the following way: a subset H of G can be seen as an injective map H → G,
i.e. any element of the target has at most one element that maps to it. The counterpart to injective maps are surjective
maps (every element of the target is mapped onto), such as the canonical map G → G / N.y[›] Interpreting subgroup
and quotients in light of these homomorphisms emphasizes the structural concept inherent to these definitions
alluded to in the introduction. In general, homomorphisms are neither injective nor surjective. Kernel and image of
group homomorphisms and the first isomorphism theorem address this phenomenon.

Examples and applications

A periodic wallpaper pattern gives rise to a wallpaper group.
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The fundamental group of a plane minus a point (bold) consists of loops around the missing point. This group is
isomorphic to the integers.
Examples and applications of groups abound. A starting point is the group Z of integers with addition as group
operation, introduced above. If instead of addition multiplication is considered, one obtains multiplicative groups.
These groups are predecessors of important constructions in abstract algebra.
Groups are also applied in many other mathematical areas. Mathematical objects are often examined by associating
groups to them and studying the properties of the corresponding groups. For example, Henri Poincaré founded what
is now called algebraic topology by introducing the fundamental group.[34] By means of this connection, topological
properties such as proximity and continuity translate into properties of groups.i[›] For example, elements of the
fundamental group are represented by loops. The second image at the right shows some loops in a plane minus a
point. The blue loop is considered null-homotopic (and thus irrelevant), because it can be continuously shrunk to a
point. The presence of the hole prevents the orange loop from being shrunk to a point. The fundamental group of the
plane with a point deleted turns out to be infinite cyclic, generated by the orange loop (or any other loop winding
once around the hole). This way, the fundamental group detects the hole.
In more recent applications, the influence has also been reversed to motivate geometric constructions by a
group-theoretical background.j[›] In a similar vein, geometric group theory employs geometric concepts, for example
in the study of hyperbolic groups.[35] Further branches crucially applying groups include algebraic geometry and
number theory.[36]

In addition to the above theoretical applications, many practical applications of groups exist. Cryptography relies on
the combination of the abstract group theory approach together with algorithmical knowledge obtained in
computational group theory, in particular when implemented for finite groups.[37] Applications of group theory are
not restricted to mathematics; sciences such as physics, chemistry and computer science benefit from the concept.

Numbers
Many number systems, such as the integers and the rationals enjoy a naturally given group structure. In some cases,
such as with the rationals, both addition and multiplication operations give rise to group structures. Such number
systems are predecessors to more general algebraic structures known as rings and fields. Further abstract algebraic
concepts such as modules, vector spaces and algebras also form groups.

Integers

The group of integers Z under addition, denoted (Z, +), has been described above. The integers, with the operation of
multiplication instead of addition, (Z, ·) do not form a group. The closure, associativity and identity axioms are
satisfied, but inverses do not exist: for example, a = 2 is an integer, but the only solution to the equation a · b = 1 in
this case is b = 1/2, which is a rational number, but not an integer. Hence not every element of Z has a
(multiplicative) inverse.k[›]

Rationals

The desire for the existence of multiplicative inverses suggests considering fractions

Fractions of integers (with b nonzero) are known as rational numbers.l[›] The set of all such fractions is commonly
denoted Q. There is still a minor obstacle for (Q, ·), the rationals with multiplication, being a group: because the
rational number 0 does not have a multiplicative inverse (i.e., there is no x such that x · 0 = 1), (Q, ·) is still not a
group.
However, the set of all nonzero rational numbers Q \ {0} = {q ∈ Q, q ≠ 0} does form an abelian group under 
multiplication, denoted (Q \ {0}, ·).m[›] Associativity and identity element axioms follow from the properties of
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integers. The closure requirement still holds true after removing zero, because the product of two nonzero rationals is
never zero. Finally, the inverse of a/b is b/a, therefore the axiom of the inverse element is satisfied.
The rational numbers (including 0) also form a group under addition. Intertwining addition and multiplication
operations yields more complicated structures called rings and—if division is possible, such as in Q—fields, which
occupy a central position in abstract algebra. Group theoretic arguments therefore underlie parts of the theory of
those entities.n[›]

Nonzero integers modulo a prime

For any prime number p, modular arithmetic furnishes the multiplicative group of integers modulo p.[38] Its elements
are integers not divisible by p, considered modulo p, i.e. two numbers are considered equivalent if their difference is
divisible by p. For example, if p = 5, there are exactly four group elements 1, 2, 3, 4: multiples of 5 are excluded and
6 and −4 are both equivalent to 1 etc. The group operation is given by multiplication. Therefore, 4 · 4 = 1, because
the usual product 16 is equivalent to 1, for 5 divides 16 − 1 = 15, denoted

16 ≡ 1 (mod 5).
The primality of p ensures that the product of two integers neither of which is divisible by p is not divisible by p
either, hence the indicated set of classes is closed under multiplication.o[›] The identity element is 1, as usual for a
multiplicative group, and the associativity follows from the corresponding property of integers. Finally, the inverse
element axiom requires that given an integer a not divisible by p, there exists an integer b such that

a · b ≡ 1 (mod p), i.e. p divides the difference a · b − 1.
The inverse b can be found by using Bézout's identity and the fact that the greatest common divisor gcd(a, p) equals
1.[39] In the case p = 5 above, the inverse of 4 is 4, and the inverse of 3 is 2, as 3 · 2 = 6 ≡ 1 (mod 5). Hence all group
axioms are fulfilled. Actually, this example is similar to (Q\{0}, ·) above, because it turns out to be the multiplicative
group of nonzero elements in the finite field Fp, denoted Fp

×.[40] These groups are crucial to public-key
cryptography.p[›]

Cyclic groups

The 6th complex roots of unity form
a cyclic group. z is a primitive

element, but z2 is not, because the
odd powers of z are not a power of

z2.

A cyclic group is a group all of whose elements are powers (when the group
operation is written additively, the term 'multiple' can be used) of a particular
element a.[41] In multiplicative notation, the elements of the group are:

..., a−3, a−2, a−1, a0 = e, a, a2, a3, ...,
where a2 means a • a, and a−3 stands for a−1 • a−1 • a−1=(a • a • a)−1 etc.h[›] Such
an element a is called a generator or a primitive element of the group.

A typical example for this class of groups is the group of n-th complex roots of
unity, given by complex numbers z satisfying zn = 1 (and whose operation is
multiplication).[42] Any cyclic group with n elements is isomorphic to this group.
Using some field theory, the group Fp

× can be shown to be cyclic: for example, if
p = 5, 3 is a generator since 31 = 3, 32 = 9 ≡ 4, 33 ≡ 2, and 34 ≡ 1.

Some cyclic groups have an infinite number of elements. In these groups, for
every non-zero element a, all the powers of a are distinct; despite the name
"cyclic group", the powers of the elements do not cycle. An infinite cyclic group is isomorphic to (Z, +), the group of
integers under addition introduced above.[43] As these two prototypes are both abelian, so is any cyclic group.

The study of abelian groups is quite mature, including the fundamental theorem of finitely generated abelian groups;
and reflecting this state of affairs, many group-related notions, such as center and commutator, describe the extent to
which a given group is not abelian.[44]
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Symmetry groups
Symmetry groups are groups consisting of symmetries of given mathematical objects—be they of geometric nature,
such as the introductory symmetry group of the square, or of algebraic nature, such as polynomial equations and
their solutions.[45] Conceptually, group theory can be thought of as the study of symmetry.t[›] Symmetries in
mathematics greatly simplify the study of geometrical or analytical objects. A group is said to act on another
mathematical object X if every group element performs some operation on X compatibly to the group law. In the
rightmost example below, an element of order 7 of the (2,3,7) triangle group acts on the tiling by permuting the
highlighted warped triangles (and the other ones, too). By a group action, the group pattern is connected to the
structure of the object being acted on.

Rotations and flips form the symmetry group of a great
icosahedron.

In chemical fields, such as crystallography, space groups and point
groups describe molecular symmetries and crystal symmetries.
These symmetries underlie the chemical and physical behavior of
these systems, and group theory enables simplification of quantum
mechanical analysis of these properties.[46] For example, group
theory is used to show that optical transitions between certain
quantum levels cannot occur simply because of the symmetry of
the states involved.

Not only are groups useful to assess the implications of
symmetries in molecules, but surprisingly they also predict that
molecules sometimes can change symmetry. The Jahn-Teller
effect is a distortion of a molecule of high symmetry when it
adopts a particular ground state of lower symmetry from a set of
possible ground states that are related to each other by the
symmetry operations of the molecule.[47] [48]

Likewise, group theory helps predict the changes in physical properties that occur when a material undergoes a phase
transition, for example, from a cubic to a tetrahedral crystalline form. An example is ferroelectric materials, where
the change from a paraelectric to a ferroelectric state occurs at the Curie temperature and is related to a change from
the high-symmetry paraelectric state to the lower symmetry ferroelectic state, accompanied by a so-called soft
phonon mode, a vibrational lattice mode that goes to zero frequency at the transition.[49]

Such spontaneous symmetry breaking has found further application in elementary particle physics, where its
occurrence is related to the appearance of Goldstone bosons.

Buckminsterfullerene
displays

icosahedral symmetry.

Ammonia, NH3. Its
symmetry group is of order 6,
generated by a 120° rotation

and a reflection.

Cubane C8H8
features

octahedral
symmetry.

Hexaaquacopper(II) complex ion,
[Cu(OH2)6]2+. Compared to a perfectly

symmetrical shape, the molecule is
vertically dilated by about 22%

(Jahn-Teller effect).

The (2,3,7) triangle group, a
hyperbolic group, acts on

this tiling of the hyperbolic
plane.

Finite symmetry groups such as the Mathieu groups are used in coding theory, which is in turn applied in error 
correction of transmitted data, and in CD players.[50] Another application is differential Galois theory, which
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characterizes functions having antiderivatives of a prescribed form, giving group-theoretic criteria for when solutions
of certain differential equations are well-behaved.u[›] Geometric properties that remain stable under group actions are
investigated in (geometric) invariant theory.[51]

General linear group and representation theory

Two vectors (the left illustration) multiplied by matrices (the middle
and right illustrations). The middle illustration represents a clockwise

rotation by 90°, while the right-most one stretches the x-coordinate
by factor 2.

Matrix groups consist of matrices together with matrix
multiplication. The general linear group GL(n, R)
consists of all invertible n-by-n matrices with real
entries.[52] Its subgroups are referred to as matrix
groups or linear groups. The dihedral group example
mentioned above can be viewed as a (very small)
matrix group. Another important matrix group is the
special orthogonal group SO(n). It describes all
possible rotations in n dimensions. Via Euler angles,
rotation matrices are used in computer graphics.[53]

Representation theory is both an application of the group concept and important for a deeper understanding of
groups.[54] [55] It studies the group by its group actions on other spaces. A broad class of group representations are
linear representations, i.e. the group is acting on a vector space, such as the three-dimensional Euclidean space R3. A
representation of G on an n-dimensional real vector space is simply a group homomorphism

ρ: G → GL(n, R)
from the group to the general linear group. This way, the group operation, which may be abstractly given, translates
to the multiplication of matrices making it accessible to explicit computations.w[›]

Given a group action, this gives further means to study the object being acted on.x[›] On the other hand, it also yields
information about the group. Group representations are an organizing principle in the theory of finite groups, Lie
groups, algebraic groups and topological groups, especially (locally) compact groups.[54] [56]

Galois groups
Galois groups have been developed to help solve polynomial equations by capturing their symmetry features.[57] [58]

For example, the solutions of the quadratic equation ax2 + bx + c = 0 are given by

Exchanging "+" and "−" in the expression, i.e. permuting the two solutions of the equation can be viewed as a (very
simple) group operation. Similar formulae are known for cubic and quartic equations, but do not exist in general for
degree 5 and higher.[59] Abstract properties of Galois groups associated with polynomials (in particular their
solvability) give a criterion for polynomials that have all their solutions expressible by radicals, i.e. solutions
expressible using solely addition, multiplication, and roots similar to the formula above.[60]

The problem can be dealt with by shifting to field theory and considering the splitting field of a polynomial. Modern
Galois theory generalizes the above type of Galois groups to field extensions and establishes—via the fundamental
theorem of Galois theory—a precise relationship between fields and groups, underlining once again the ubiquity of
groups in mathematics.
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Finite groups
A group is called finite if it has a finite number of elements. The number of elements is called the order of the group
G.[61] An important class is the symmetric groups SN, the groups of permutations of N letters. For example, the
symmetric group on 3 letters S3 is the group consisting of all possible swaps of the three letters ABC, i.e. contains the
elements ABC, ACB, ..., up to CBA, in total 6 (or 3 factorial) elements. This class is fundamental insofar as any finite
group can be expressed as a subgroup of a symmetric group SN for a suitable integer N (Cayley's theorem). Parallel
to the group of symmetries of the square above, S3 can also be interpreted as the group of symmetries of an
equilateral triangle.
The order of an element a in a group G is the least positive integer n such that a n = e, where a n represents

i.e. application of the operation • to n copies of a. (If • represents multiplication, then an corresponds to the nth power
of a.) In infinite groups, such an n may not exist, in which case the order of a is said to be infinity. The order of an
element equals the order of the cyclic subgroup generated by this element.
More sophisticated counting techniques, for example counting cosets, yield more precise statements about finite
groups: Lagrange's Theorem states that for a finite group G the order of any finite subgroup H divides the order of G.
The Sylow theorems give a partial converse.
The dihedral group (discussed above) is a finite group of order 8. The order of r1 is 4, as is the order of the subgroup
R it generates (see above). The order of the reflection elements fv etc. is 2. Both orders divide 8, as predicted by
Lagrange's Theorem. The groups Fp

× above have order p − 1.

Classification of finite simple groups
Mathematicians often strive for a complete classification (or list) of a mathematical notion. In the context of finite
groups, this aim quickly leads to difficult and profound mathematics. According to Lagrange's theorem, finite groups
of order p, a prime number, are necessarily cyclic (abelian) groups Zp. Groups of order p2 can also be shown to be
abelian, a statement which does not generalize to order p3, as the non-abelian group D4 of order 8 = 23 above
shows.[62] Computer algebra systems can be used to list small groups, but there is no classification of all finite
groups.q[›] An intermediate step is the classification of finite simple groups.r[›] A nontrivial group is called simple if
its only normal subgroups are the trivial group and the group itself.s[›] The Jordan–Hölder theorem exhibits finite
simple groups as the building blocks for all finite groups.[63] Listing all finite simple groups was a major
achievement in contemporary group theory. 1998 Fields Medal winner Richard Borcherds succeeded to prove the
monstrous moonshine conjectures, a surprising and deep relation of the largest finite simple sporadic group—the
"monster group"—with certain modular functions, a piece of classical complex analysis, and string theory, a theory
supposed to unify the description of many physical phenomena.[64]
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Groups with additional structure
Many groups are simultaneously groups and examples of other mathematical structures. In the language of category
theory, they are group objects in a category, meaning that they are objects (that is, examples of another mathematical
structure) which come with transformations (called morphisms) that mimic the group axioms. For example, every
group (as defined above) is also a set, so a group is a group object in the category of sets.

Topological groups

The unit circle in the complex plane under
complex multiplication is a Lie group and,

therefore, a topological group. It is topological
since complex multiplication and division are

continuous. It is a manifold and thus a Lie group,
because every small piece, such as the red arc in

the figure, looks like a part of the real line (shown
at the bottom).

Some topological spaces may be endowed with a group law. In order
for the group law and the topology to interweave well, the group
operations must be continuous functions, that is, g • h, and g−1 must
not vary wildly if g and h vary only little. Such groups are called
topological groups, and they are the group objects in the category of
topological spaces.[65] The most basic examples are the reals R under
addition, (R \ {0}, ·), and similarly with any other topological field
such as the complex numbers or p-adic numbers. All of these groups
are locally compact, so they have Haar measures and can be studied via
harmonic analysis. The former offer an abstract formalism of invariant
integrals. Invariance means, in the case of real numbers for example:

for any constant c. Matrix groups over these fields fall under this regime, as do adele rings and adelic algebraic
groups, which are basic to number theory.[66] Galois groups of infinite field extensions such as the absolute Galois
group can also be equipped with a topology, the so-called Krull topology, which in turn is central to generalize the
above sketched connection of fields and groups to infinite field extensions.[67] An advanced generalization of this
idea, adapted to the needs of algebraic geometry, is the étale fundamental group.[68]

Lie groups
Lie groups (in honor of Sophus Lie) are groups which also have a manifold structure, i.e. they are spaces looking
locally like some Euclidean space of the appropriate dimension.[69] Again, the additional structure, here the manifold
structure, has to be compatible, i.e. the maps corresponding to multiplication and the inverse have to be smooth.
A standard example is the general linear group introduced above: it is an open subset of the space of all n-by-n
matrices, because it is given by the inequality

det (A) ≠ 0,
where A denotes an n-by-n matrix.[70]

Lie groups are of fundamental importance in physics: Noether's theorem links continuous symmetries to conserved 
quantities.[71] Rotation, as well as translations in space and time are basic symmetries of the laws of mechanics.
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They can, for instance, be used to construct simple models—imposing, say, axial symmetry on a situation will
typically lead to significant simplification in the equations one needs to solve to provide a physical description.v[›]

Another example are the Lorentz transformations, which relate measurements of time and velocity of two observers
in motion relative to each other. They can be deduced in a purely group-theoretical way, by expressing the
transformations as a rotational symmetry of Minkowski space. The latter serves—in the absence of significant
gravitation—as a model of space time in special relativity.[72] The full symmetry group of Minkowski space, i.e.
including translations, is known as the Poincaré group. By the above, it plays a pivotal role in special relativity and,
by implication, for quantum field theories.[73] Symmetries that vary with location are central to the modern
description of physical interactions with the help of gauge theory.[74]

Generalizations

Group-like structures

Totality Associativity Identity Inverses

Group Yes Yes Yes Yes

Monoid Yes Yes Yes No

Semigroup Yes Yes No No

Loop Yes No Yes Yes

Quasigroup Yes No No Yes

Magma Yes No No No

Groupoid No Yes Yes Yes

Category No Yes Yes No

In abstract algebra, more general structures are defined by relaxing some of the axioms defining a group.[26] [75] [76]

For example, if the requirement that every element has an inverse is eliminated, the resulting algebraic structure is
called a monoid. The natural numbers N (including 0) under addition form a monoid, as do the nonzero integers
under multiplication (Z \ {0}, ·), see above. There is a general method to formally add inverses to elements to any
(abelian) monoid, much the same way as (Q \ {0}, ·) is derived from (Z \ {0}, ·), known as the Grothendieck group.
Groupoids are similar to groups except that the composition a • b need not be defined for all a and b. They arise in
the study of more complicated forms of symmetry, often in topological and analytical structures, such as the
fundamental groupoid. Finally, it is possible to generalize any of these concepts by replacing the binary operation
with an arbitrary n-ary one (i.e. an operation taking n arguments). With the proper generalization of the group
axioms this gives rise to an n-ary group.[77] The table gives a list of several structures generalizing groups.

See also
• Group ring
• Group algebra
• Euclidean group
• Free group
• Finitely presented group
• Fundamental group
• Grothendieck group
• Symmetry in physics
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Notes
^ a: Mathematical Reviews lists 3,224 research papers on group theory and its generalizations written in 2005.
^ b: The closure axiom is already implied by the condition that • be a binary operation. Some authors therefore omit
this axiom. Lang 2002
^ c: See, for example, the books of Lang (2002, 2005) and Herstein (1996, 1975).
^ d: However, a group is not determined by its lattice of subgroups. See Suzuki 1951.
^ e: The fact that the group operation extends this canonically is an instance of a universal property.
^ f: For example, if G is finite, then the size of any subgroup and any quotient group divides the size of G, according
to Lagrange's theorem.
^ g: The word homomorphism derives from Greek ὁμός—the same and μορφή—structure.
^ h: The additive notation for elements of a cyclic group would be t • a, t in Z.
^ i: See the Seifert–van Kampen theorem for an example.
^ j: An example is group cohomology of a group which equals the singular homology of its classifying space.
^ k: Elements which do have multiplicative inverses are called units, see Lang 2002, §II.1, p. 84.
^ l: The transition from the integers to the rationals by adding fractions is generalized by the quotient field.
^ m: The same is true for any field F instead of Q. See Lang 2005, §III.1, p. 86.
^ n: For example, a finite subgroup of the multiplicative group of a field is necessarily cyclic. See Lang 2002,
Theorem IV.1.9. The notions of torsion of a module and simple algebras are other instances of this principle.
^ o: The stated property is a possible definition of prime numbers. See prime element.
^ p: For example, the Diffie-Hellman protocol uses the discrete logarithm.
^ q: The groups of order at most 2000 are known. Up to isomorphism, there are about 49 billion. See Besche, Eick
& O'Brien 2001.
^ r: The gap between the classification of simple groups and the one of all groups lies in the extension problem, a
problem too hard to be solved in general. See Aschbacher 2004, p. 737.
^ s: Equivalently, a nontrivial group is simple if its only quotient groups are the trivial group and the group itself.
See Michler 2006, Carter 1989.
^ t: More rigorously, every group is the symmetry group of some graph, see Frucht 1939.
^ u: More precisely, the monodromy action on the vector space of solutions of the differential equations is
considered. See Kuga 1993, pp. 105–113.
^ v: See Schwarzschild metric for an example where symmetry greatly reduces the complexity of physical systems.
^ w: This was crucial to the classification of finite simple groups, for example. See Aschbacher 2004.
^ x: See, for example, Schur's Lemma for the impact of a group action on simple modules. A more involved
example is the action of an absolute Galois group on étale cohomology.
^ y: Injective and surjective maps correspond to mono- and epimorphisms, respectively. They are interchanged when
passing to the dual category.
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Group action

Given an equilateral triangle, the
counterclockwise rotation by 120° around the

center of the triangle "acts" on the set of vertices
of the triangle by mapping every vertex to

another one.

In algebra and geometry, a group action is a way of describing
symmetries of objects using groups. The essential elements of the
object are described by a set and the symmetries of the object are
described by the symmetry group of this set, which consists of
bijective transformations of the set. In this case, the group is also called
a permutation group (especially if the set is finite or not a vector
space) or transformation group (especially if the set is a vector space
and the group acts like linear transformations of the set).

A group action is a flexible generalization of the notion of a symmetry
group in which every element of the group "acts" like a bijective
transformation (or "symmetry") of some set, without being identified
with that transformation. This allows for a more comprehensive
description of the symmetries of an object, such as a polyhedron, by
allowing the same group to act on several different sets, such as the set
of vertices, the set of edges and the set of faces of the polyhedron.

If G is a group and X is a set then a group action may be defined as a
group homomorphism from G to the symmetric group of X. The action assigns a permutation of X to each element of
the group in such a way that

• the permutation of X assigned to the identity element of G is the identity transformation of X;
• the permutation of X assigned to a product gh of two elements of the group is the composite of the permutations

assigned to g and h.
Since each element of G is represented as a permutation, a group action is also known as a permutation
representation.
The abstraction provided by group actions is a powerful one, because it allows geometrical ideas to be applied to
more abstract objects. Many objects in mathematics have natural group actions defined on them. In particular, groups
can act on other groups, or even on themselves. Despite this generality, the theory of group actions contains
wide-reaching theorems, such as the orbit stabilizer theorem, which can be used to prove deep results in several
fields.

Definition
If G is a group and X is a set, then a (left) group action of G on X is a binary function

denoted

which satisfies the following two axioms:
1. (gh)·x = g·(h·x) for all g, h in G and x in X;
2. e·x = x for every x in X (where e denotes the identity element of G).
The set X is called a (left) G-set. The group G is said to act on X (on the left).
From these two axioms, it follows that for every g in G, the function which maps x in X to g·x is a bijective map
from X to X (its inverse being the function which maps x to g-1·x). Therefore, one may alternatively define a group
action of G on X as a group homomorphism from G into the symmetric group Sym(X) of all bijections from X to X.
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In complete analogy, one can define a right group action of G on X as a function X × G → X by the two axioms:
1. x·(gh) = (x·g)·h;
2. x·e = x.
The difference between left and right actions is in the order in which a product like gh acts on x. For a left action h
acts first and is followed by g, while for a right action g acts first and is followed by h. From a right action a left
action can be constructed by composing with the inverse operation on the group. If r is a right action, then

is a left action, since

and

Similarly, any left action can be converted into a right action. Therefore in the sequel we consider only left group
actions, since right actions add nothing new.

Examples
• The trivial action for any group G is defined by g·x=x for all g in G and all x in X; that is, the whole group G

induces the identity permutation on X.
• Every group G acts on G in two natural but essentially different ways: g·x = gx for all x in G, or g·x = gxg−1 for all

x in G. The latter action is often called the conjugation action, and an exponential notation is commonly used for
the right-action variant: xg = g−1xg; it satisfies (xg)h = xgh.

• The symmetric group Sn and its subgroups act on the set { 1, ... , n } by permuting its elements
• The symmetry group of a polyhedron acts on the set of vertices of that polyhedron. It also acts on the set of faces

of the polyhedron.
• The symmetry group of any geometrical object acts on the set of points of that object
• The automorphism group of a vector space (or graph, or group, or ring...) acts on the vector space (or set of

vertices of the graph, or group, or ring...).
• The general linear group GL(n,R), special linear group SL(n,R), orthogonal group O(n,R), and special orthogonal

group SO(n,R) are Lie groups which act on Rn.
• The Galois group of a field extension E/F acts on the bigger field E. So does every subgroup of the Galois group.
• The additive group of the real numbers (R, +) acts on the phase space of "well-behaved" systems in classical

mechanics (and in more general dynamical systems): if t is in R and x is in the phase space, then x describes a
state of the system, and t·x is defined to be the state of the system t seconds later if t is positive or −t seconds ago
if t is negative.

• The additive group of the real numbers (R, +) acts on the set of real functions of a real variable with (g·f)(x) equal
to e.g. f(x + g), f(x) + g, , , , or , but not 

• The quaternions with modulus 1, as a multiplicative group, act on R3: for any such quaternion
, the mapping f(x) = z x z* is a counterclockwise rotation through an angle about an

axis v; −z is the same rotation; see quaternions and spatial rotation.
• The isometries of the plane act on the set of 2D images and patterns, such as a wallpaper pattern. The definition

can be made more precise by specifying what is meant by image or pattern, e.g. a function of position with values
in a set of colors.

• More generally, a group of bijections g: V → V acts on the set of functions x: V → W by (gx)(v) = x(g−1(v)) (or a 
restricted set of such functions that is closed under the group action). Thus a group of bijections of space induces
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a group action on "objects" in it.

Types of actions
The action of G on X is called
• transitive if X is non-empty and for any two x, y in X there exists a g in G such that g·x = y.

• sharply transitive if that g is unique; it is equivalent to regularity defined below.
• n-transitive if X has at least n elements and for any pairwise distinct x1, ..., xn and pairwise distinct y1, ..., yn there

is a g in G such that g.xk = yk for 1 ≤ k ≤ n. A 2-transitive action is also called doubly transitive, a 3-transitive
action is also called triply transitive, and so on. Such actions define 2-transitive groups, 3-transitive groups, and
multiply transitive groups.
• sharply n-transitive if there is exactly one such g. See also sharply triply transitive groups.

• faithful (or effective) if for any two distinct g, h in G there exists an x in X such that g·x ≠ h·x; or equivalently, if
for any g≠ e in G there exists an x in X such that g·x ≠ x. Intuitively, different elements of G induce different
permutations of X.

• free (or semiregular) if for any two distinct g, h in G and all x in X we have g·x ≠ h·x; or equivalently, if g·x = x
for some x then g = e.

• regular (or simply transitive) if it is both transitive and free; this is equivalent to saying that for any two x, y in X
there exists precisely one g in G such that g·x = y. In this case, X is known as a principal homogeneous space for
G or as a G-torsor.

• locally free if G is a topological group, and there is a neighbourhood U of e in G such that the restriction of the
action to U is free; that is, if g·x = x for some x and some g in U then g = e.

• irreducible if X is a nonzero module over a ring R, the action of G is R-linear, and there is no nonzero proper
invariant submodule.

Every free action on a non-empty set is faithful. A group G acts faithfully on X if and only if the homomorphism G
→ Sym(X) has a trivial kernel. Thus, for a faithful action, G is isomorphic to a permutation group on X; specifically,
G is isomorphic to its image in Sym(X).
The action of any group G on itself by left multiplication is regular, and thus faithful as well. Every group can,
therefore, be embedded in the symmetric group on its own elements, Sym(G) — a result known as Cayley's theorem.
If G does not act faithfully on X, one can easily modify the group to obtain a faithful action. If we define N = {g in G
: g·x = x for all x in X}, then N is a normal subgroup of G; indeed, it is the kernel of the homomorphism G →
Sym(X). The factor group G/N acts faithfully on X by setting (gN)·x = g·x. The original action of G on X is faithful if
and only if N = {e}.

Orbits and stabilizers
Consider a group G acting on a set X. The orbit of a point x in X is the set of elements of X to which x can be moved
by the elements of G. The orbit of x is denoted by Gx:

The defining properties of a group guarantee that the set of orbits of (points x in) X under the action of G form a
partition of X. The associated equivalence relation is defined by saying x ~ y if and only if there exists a g in G with
g·x = y. The orbits are then the equivalence classes under this relation; two elements x and y are equivalent if and
only if their orbits are the same, i.e. Gx = Gy.
The set of all orbits of X under the action of G is written as X /G (or, less frequently: G \X), and is called the quotient
of the action; in geometric situations it may be called the orbit space.
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If Y is a subset of X, we write GY for the set { g·y : y  Y and g  G}. We call the subset Y invariant under G if
GY = Y (which is equivalent to GY ⊆ Y). In that case, G also operates on Y. The subset Y is called fixed under G if g·y
= y for all g in G and all y in Y. Every subset that's fixed under G is also invariant under G, but not vice versa.
Every orbit is an invariant subset of X on which G acts transitively. The action of G on X is transitive if and only if
all elements are equivalent, meaning that there is only one orbit.
For every x in X, we define the stabilizer subgroup of x (also called the isotropy group or little group) as the set of
all elements in G that fix x:

This is a subgroup of G, though typically not a normal one. The action of G on X is free if and only if all stabilizers
are trivial. The kernel N of the homomorphism G → Sym(X) is given by the intersection of the stabilizers Gx for all x
in X.
Orbits and stabilizers are closely related. For a fixed x in X, consider the map from G to X given by g ↦ g·x. The
image of this map is the orbit of x and the coimage is the set of all left cosets of Gx. The standard quotient theorem of
set theory then gives a natural bijection between G /Gx and Gx. Specifically, the bijection is given by hGx ↦ h·x.
This result is known as the orbit-stabilizer theorem.
If G and X are finite then the orbit-stabilizer theorem, together with Lagrange's theorem, gives

This result is especially useful since it can be employed for counting arguments.
Note that if two elements x and y belong to the same orbit, then their stabilizer subgroups, Gx and Gy, are isomorphic
(or conjugate). More precisely: if y = g·x, then Gy = gGx g

−1. Points with conjugate stabilizer subgroups are said to
have the same orbit-type.
A result closely related to the orbit-stabilizer theorem is Burnside's lemma:

where Xg is the set of points fixed by g. This result is mainly of use when G and X are finite, when it can be
interpreted as follows: the number of orbits is equal to the average number of points fixed per group element.
The set of formal differences of finite G-sets forms a ring called the Burnside ring, where addition corresponds to
disjoint union, and multiplication to Cartesian product.

Group actions and groupoids
The notion of group action can be put in a broader context by using the associated `action groupoid' 
associated to the group action, thus allowing techniques from groupoid theory such as presentations and fibrations.
Further the stabilisers of the action are the vertex groups, and the orbits of the action are the components, of the
action groupoid. For more details, see the book `Topology and groupoids' referenced below.
This action groupoid comes with a morphism which is a `covering morphism of groupoids'. This
allows a relation between such morphisms and covering maps in topology.

http://en.wikipedia.org/w/index.php?title=Subset
http://en.wikipedia.org/w/index.php?title=Group_action%23Types_of_actions
http://en.wikipedia.org/w/index.php?title=Subgroup
http://en.wikipedia.org/w/index.php?title=Intersection_%28set_theory%29
http://en.wikipedia.org/w/index.php?title=Image_%28mathematics%29
http://en.wikipedia.org/w/index.php?title=Coimage
http://en.wikipedia.org/w/index.php?title=Coset
http://en.wikipedia.org/w/index.php?title=Lagrange%27s_theorem_%28group_theory%29
http://en.wikipedia.org/w/index.php?title=Group_isomorphism
http://en.wikipedia.org/w/index.php?title=Conjugacy_class
http://en.wikipedia.org/w/index.php?title=Burnside%27s_lemma
http://en.wikipedia.org/w/index.php?title=Ring_%28mathematics%29
http://en.wikipedia.org/w/index.php?title=Burnside_ring
http://en.wikipedia.org/w/index.php?title=Disjoint_union
http://en.wikipedia.org/w/index.php?title=Cartesian_product
http://en.wikipedia.org/w/index.php?title=Covering_maps


Group action 47

Morphisms and isomorphisms between G-sets
If X and Y are two G-sets, we define a morphism from X to Y to be a function f : X → Y such that f(g·x) = g·f(x) for all
g in G and all x in X. Morphisms of G-sets are also called equivariant maps or G-maps.
If such a function f is bijective, then its inverse is also a morphism, and we call f an isomorphism and the two G-sets
X and Y are called isomorphic; for all practical purposes, they are indistinguishable in this case.
Some example isomorphisms:
• Every regular G action is isomorphic to the action of G on G given by left multiplication.
• Every free G action is isomorphic to G×S, where S is some set and G acts by left multiplication on the first

coordinate.
• Every transitive G action is isomorphic to left multiplication by G on the set of left cosets of some subgroup H of

G.
With this notion of morphism, the collection of all G-sets forms a category; this category is a Grothendieck topos (in
fact, assuming a classical metalogic, this topos will even be Boolean).

Continuous group actions
One often considers continuous group actions: the group G is a topological group, X is a topological space, and the
map G × X → X is continuous with respect to the product topology of G × X. The space X is also called a G-space in
this case. This is indeed a generalization, since every group can be considered a topological group by using the
discrete topology. All the concepts introduced above still work in this context, however we define morphisms
between G-spaces to be continuous maps compatible with the action of G. The quotient X/G inherits the quotient
topology from X, and is called the quotient space of the action. The above statements about isomorphisms for
regular, free and transitive actions are no longer valid for continuous group actions.
If G is a discrete group acting on a topological space X, the action is properly discontinuous if for any point x in X
there is an open neighborhood U of x in X, such that the set of all for which consists of
the identity only. If X is a regular covering space of another topological space Y, then the action of the deck
transformation group on X is properly discontinuous as well as being free. Every free, properly discontinuous action
of a group G on a path-connected topological space X arises in this manner: the quotient map X ↦ X/G is a regular
covering map, and the deck transformation group is the given action of G on X. Furthermore, if X is simply
connected, the fundamental group of will be isomorphic to . These results have been generalised in the
book Topology and Groupoids referenced below to obtain the fundamental groupoid of the orbit space of a
discontinuous action of discrete group on a Hausdorff space, as, under reasonable local conditions, the orbit groupoid
of the fundamental groupoid of the space. This allows calculations such as the fundamental group of a symmetric
square.
An action of a group G on a locally compact space X is cocompact if there exists a compact subset A of X such that
GA = X. For a properly discontinuous action, cocompactness is equivalent to compactness of the quotient space X/G.
The action of G on X is said to be proper if the mapping G×X → X×X that sends (g,x)↦(gx,x) is a proper map.

http://en.wikipedia.org/w/index.php?title=Equivariant_map
http://en.wikipedia.org/w/index.php?title=Bijective
http://en.wikipedia.org/w/index.php?title=Coset
http://en.wikipedia.org/w/index.php?title=Subgroup
http://en.wikipedia.org/w/index.php?title=Grothendieck_topos
http://en.wikipedia.org/w/index.php?title=Topological_group
http://en.wikipedia.org/w/index.php?title=Continuous_function_%28topology%29
http://en.wikipedia.org/w/index.php?title=Product_topology
http://en.wikipedia.org/w/index.php?title=Discrete_space
http://en.wikipedia.org/w/index.php?title=Quotient_topology
http://en.wikipedia.org/w/index.php?title=Quotient_topology
http://en.wikipedia.org/w/index.php?title=Properly_discontinuous
http://en.wikipedia.org/w/index.php?title=Covering_map%23Deck_transformation_group%2C_regular_covers
http://en.wikipedia.org/w/index.php?title=Covering_map%23Deck_transformation_group%2C_regular_covers
http://en.wikipedia.org/w/index.php?title=Covering_map%23Deck_transformation_group%2C_regular_covers
http://en.wikipedia.org/w/index.php?title=Path-connected
http://en.wikipedia.org/w/index.php?title=Fundamental_groupoid
http://en.wikipedia.org/w/index.php?title=Proper_map


Group action 48

Strongly continuous group action and smooth points
If is an action of a topological group on another topological space , one says that it is
strongly continuous if for all , the map g ↦ αgx is continuous with respect to the respective topologies.
Such an action induce an action on the space of continuous function on by .

The subspace of smooth points for the action is the subspace of of points such that g ↦ αg(x) is smooth,
i.e. it is continuous and all derivatives are continuous.

Generalizations
One can also consider actions of monoids on sets, by using the same two axioms as above. This does not define
bijective maps and equivalence relations however.
Instead of actions on sets, one can define actions of groups and monoids on objects of an arbitrary category: start
with an object X of some category, and then define an action on X as a monoid homomorphism into the monoid of
endomorphisms of X. If X has an underlying set, then all definitions and facts stated above can be carried over. For
example, if we take the category of vector spaces, we obtain group representations in this fashion.
One can view a group G as a category with a single object in which every morphism is invertible. A group action is
then nothing but a functor from G to the category of sets, and a group representation is a functor from G to the
category of vector spaces. A morphism between G-sets is then a natural transformation between the group action
functors. In analogy, an action of a groupoid is a functor from the groupoid to the category of sets or to some other
category.
Without using the language of categories, one can extend the notion of a group action on a set X by studying as well
its induced action on the power set of X. This is useful, for instance, in studying the action of the large Mathieu
group on a 24-set and in studying symmetry in certain models of finite geometries.

See also
• Group with operators
• Monoid action
• Gain graph
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Field (mathematics)
In abstract algebra, a field is an algebraic structure with notions of addition, subtraction, multiplication, and division,
satisfying certain axioms. The most commonly used fields are the field of real numbers, the field of complex
numbers, and the field of rational numbers, but there are also finite fields, fields of functions, various algebraic
number fields, p-adic fields, and so forth.
Any field may be used as the scalars for a vector space, which is the standard general context for linear algebra. The
theory of field extensions (including Galois theory) involves the roots of polynomials with coefficients in a field;
among other results, this theory leads to impossibility proofs for the classical problems of angle trisection and
squaring the circle with a compass and straightedge, as well as a proof of the Abel–Ruffini theorem on the
insolubility of quintic equations. In modern mathematics, the theory of fields (or field theory) plays an essential role
in number theory and algebraic geometry.
As an algebraic structure, every field is a ring, but not every ring is a field. The most important difference is that
fields allow for division (though not division by zero), while a ring need not possess multiplicative inverses. Also,
the multiplication operation in a field is required to be commutative. A ring in which division is possible but
commutativity is not assumed (such as the quaternions) is called a division ring or skew field. (Historically, division
rings were sometimes referred to as fields, while fields were called “commutative fields”.)
As a ring, a field may be classified as a specific type of integral domain, and can be characterized by the following
(not necessarily exhaustive) chain of class inclusions:
• Commutative rings ⊃ integral domains ⊃ integrally closed domains ⊃ unique factorization domains ⊃

principal ideal domains ⊃ Euclidean domains ⊃ fields ⊃ finite fields.

Definition and illustration
An example of a field is the set Q of rational numbers. In Q, there are four essential operations: addition together
with subtraction, and multiplication with division. Intuitively, a field is a set of numbers which has four such
operations. In order to qualify as a field, these operations have to satisfy certain axioms.
Intuitively, a field is a set F that is a commutative group with respect to two compatible operations, addition and
multiplication, with "compatible" being formalized by distributivity, and the caveat that the additive identity (0) has
no multiplicative inverse (one cannot divide by 0).
The most common way to formalize this is by defining a field as a set together with two operations, usually called
addition and multiplication, and denoted by + and ·, respectively, such that the following axioms hold; subtraction
and division are defined implicitly in terms of the inverse operations of addition and multiplication:[1]

Closure of F under addition and multiplication
For all a, b in F, both a + b and a · b are in F (or more formally, + and · are binary operations on F).

Associativity of addition and multiplication
For all a, b, and c in F, the following equalities hold: a + (b + c) = (a + b) + c and a · (b · c) = (a · b) · c.

Commutativity of addition and multiplication
For all a and b in F, the following equalities hold: a + b = b + a and a · b = b · a.
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Additive and multiplicative identity

There exists an element of F, called the additive identity element and denoted by 0, such that for all a in F, a +
0 = a. Likewise, there is an element, called the multiplicative identity element and denoted by 1, such that for
all a in F, a · 1 = a. For technical reasons, the additive identity and the multiplicative identity are required to
be distinct.

Additive and multiplicative inverses

For every a in F, there exists an element −a in F, such that a + (−a) = 0. Similarly, for any a in F other than 0,
there exists an element a−1 in F, such that a · a−1 = 1. (The elements a + (−b) and a · b−1 are also denoted a − b
and a/b, respectively.) In other words, subtraction and division operations exist.

Distributivity of multiplication over addition
For all a, b and c in F, the following equality holds: a · (b + c) = (a · b) + (a · c).

Note that all but the last axiom are exactly the axioms for a commutative group, while the last axiom is a
compatibility condition between the two operations.

First example: rational numbers
A simple example of a field is the field of rational numbers, consisting of the fractions a/b, where a and b are
integers, and b ≠ 0. The additive inverse of such a fraction is simply −a/b, and the multiplicative inverse—provided
that a ≠ 0, as well—is b/a. To see the latter, note that

The abstractly required field axioms reduce to standard properties of rational numbers, such as the law of
distributivity

or the law of commutativity and law of associativity.

Second example: a field with four elements

+ O I A B

O O I A B

I I O B A

A A B O I

B B A I O
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· O I A B

O O O O O

I O I A B

A O A B I

B O B I A

In addition to familiar number systems such as the rationals, there are other, less immediate examples of fields. The
following example is a field consisting of four elements called O, I, A and B. The notation is chosen such that O
plays the role of the additive identity element (denoted 0 in the axioms), and I is the multiplicative identity (denoted
1 above). Checking that all field axioms are indeed satisfied is easy, if tedious. For example:

A · (B + A) = A · I = A, which equals A · B + A · A = I + B = A, as required by the distributivity.
The above field is called a finite field with four elements, denoted F4. Field theory is concerned with understanding
the reasons for the existence of this field, defined in a fairly ad-hoc manner, and with describing its inner structure.
For example, from a glance at the multiplication table, it can be seen that any non-zero element, i.e., I, A, and B, is a
power of A. Indeed A = A1, B = A2 = A · A, and finally I = A3 = A · A · A. This is no coincidence, but one of the
starting points of a deeper understanding of (finite) fields.

Alternative axiomatizations
As with other algebraic structures, there exist alternative axiomatizations. Because of the relations between the
operations, one can alternatively axiomatize a field by explicitly assuming that are four binary operations (add,
subtract, multiply, divide) with axioms relating these, or in terms of two binary operations (add, multiply) and two
unary operations (additive inverse, multiplicative inverse), or other variants.
The usual axiomatization in terms of the two operations of addition and multiplication is brief and allows the other
operations to be defined in terms of these basic ones, but in other contexts, such as topology and category theory, it
is important to include all operations as explicitly given, rather than implicitly defined (compare topological group).
This is because without further assumptions, the implicitly defined inverses may not be continuous (in topology), or
may not be able to be defined (in category theory): defining an inverse requires that one be working with a set, not a
more general object.

Related algebraic structures

Ring and field axioms

Abelian group Ring Commutative
ring

Skew field
or

Division
ring

Field

Abelian (additive) group
structure

Yes Yes Yes Yes Yes

Multiplicative structure
and distributivity

– Yes Yes Yes Yes

Commutativity of multiplication – No Yes No Yes

Multiplicative inverses – No No Yes Yes

The axioms imposed above resemble the ones familiar from other algebraic structures. For example, the existence of 
the binary operation "·", together with its commutativity, associativity, (multiplicative) identity element and inverses
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are precisely the axioms for an abelian group. In other words, for any field, the subset of nonzero elements F \ {0},
also often denoted F×, is an abelian group (F×, ·) usually called multiplicative group of the field. Likewise (F, +) is
an abelian group. The structure of a field is hence the same as specifying such two group structures (on the same set),
obeying the distributivity.
Important other algebraic structures such as rings arise when requiring only part of the above axioms. For example,
if the requirement of commutativity of the multiplication operation · is dropped, one gets structures usually called
division rings or skew fields.

Remarks
By elementary group theory, applied to the abelian groups (F×, ·), and (F, +), the additive inverse −a and the
multiplicative inverse a−1 are uniquely determined by a.
Similar direct consequences from the field axioms include

−(a · b) = (−a) · b = a · (−b), in particular −a = (−1) · a
as well as

a · 0 = 0.
Both can be shown by replacing b or c with 0 in the distributive property

History
The concept of field was used implicitly by Niels Henrik Abel and Évariste Galois in their work on the solvability of
polynomial equations with rational coefficients of degree 5 or higher.
In 1871, Richard Dedekind introduced, for a set of real or complex numbers which is closed under the four
arithmetic operations, the German word Körper, which means "body" or "corpus" (to suggest an organically closed
entity), hence the common use of the letter K to denote a field. He also defined rings (then called order or
order-modul), but the term "a ring" (Zahlring) was invented by Hilbert. [2] In 1893, Eliakim Hastings Moore called
the concept "field" in English.[3]

In 1881, Leopold Kronecker defined what he called a "domain of rationality", which is indeed a field of polynomials
in modern terms. In 1893, Heinrich M. Weber gave the first clear definition of an abstract field.[4] In 1910 Ernst
Steinitz published the very influential paper Algebraische Theorie der Körper (English: Algebraic Theory of
Fields).[5] In this paper he axiomatically studies the properties of fields and defines many important field theoretic
concepts like prime field, perfect field and the transcendence degree of a field extension.
Emil Artin developed the relationship between groups and fields in great detail during 1928-1942.

Examples

Rationals and algebraic numbers
The field of rational numbers Q has been introduced above. A related class of fields very important in number theory
are algebraic number fields. We will first give an example, namely the field Q[ζ3] consisting of expressions

a + b · ζ + c · ζ2, a, b, c ∈ Q
where ζ is a third root of unity, i.e., a complex number satisfying ζ3 = 1, ζ ≠ 1, can be used to prove a special case of
Fermat's last theorem, which asserts the non-existence of rational nonzero solutions to the equation

x3 + y3 = z3.
In the language of field extensions detailed below, Q[ζ3] is a field extension of degree 3. Algebraic number fields are
by definition finite field extensions of Q, that is, fields containing Q having finite dimension as a Q-vector space.
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Reals, complex numbers, and p-adic numbers
Take the real numbers R, under the usual operations of addition and multiplication. When the real numbers are given
the usual ordering, they form a complete ordered field; it is this structure which provides the foundation for most
formal treatments of calculus.
The complex numbers C consist of expressions

a + bi
where i is the imaginary unit, i.e., a (non-real) number satisfying i2 = −1. Addition and multiplication of real
numbers are defined in such a way that all field axioms hold for C. For example, the distributive law enforces

(a + bi)·(c + di) = ac + bci + adi + bdi2, which equals ac−bd + (bc + ad)i.
The real numbers can be constructed by completing the rational numbers, i.e., filling the "gaps": for example √2 is
such a gap. By a formally very similar procedure, another important class of fields, the field of p-adic numbers Qp is
built. It is used in number theory and p-adic analysis.
Hyperreal numbers and superreal numbers extend the real numbers with the addition of infinitesimal and infinite
numbers.

Constructible numbers

Given 0, 1, r1 and r2, the construction yields r1·r2

In antiquity, several geometric problems concerned the
(in)feasibility of constructing certain numbers with compass and
straightedge. For example it was unknown to the Greeks that it is
in general impossible to trisect a given angle. Using the field
notion and field theory allows these these problems to be settled.
To do so, the field of constructible numbers is considered. It
contains, on the plane, the points 0 and 1, and all complex
numbers that can be constructed from these two by a finite number
of construction steps using only compass and straightedge. This
set, endowed with the usual addition and multiplication of
complex numbers does form a field. For example, multiplying two (real) numbers r1 and r2 that have already been
constructed can be done using construction at the right, based on the intercept theorem. This way, the obtained field
F contains all rational numbers, but is bigger than Q, because for any f ∈ F, the square root of f is also a constructible
number.

Finite fields
Finite fields (also called Galois fields) are fields with finitely many elements. The above introductory example F4 is
a field with four elements. Highlighted in the multiplication and addition tables above is the field F2 consisting of
two elements O and I. This is the smallest field, because by definition a field has at least two distinct elements 1 ≠ 0.
Interpreting the addition and multiplication in this latter field as XOR and AND operations, this field finds
applications in computer science, especially in cryptography and coding theory.
In a finite field there is necessarily an integer n such that 1 + 1 + ... + 1 (n repeated terms) equals 0. It can be shown
that the smallest such n must be a prime number, called the characteristic of the field. If a (necessarily infinite) field
has the property that 1 + 1 + ... + 1 is never zero, for any number of summands, such as in Q, for example, the
characteristic is said to be zero.
A basic class of finite fields are the fields Fp with p elements (p a prime number):

Fp = Z/pZ = {0, 1, ..., p − 1},
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where the operations are defined by performing the operation in the set of integers Z, dividing by p and taking the
remainder; see modular arithmetic. A field K of characteristic p necessarily contains Fp, and therefore may be
viewed as a vector space over Fp, of finite dimension if K is finite. Thus a finite field K has prime power order, i.e.,
K has q = pn elements (where n > 0 is the number of elements in a basis of K over Fp). By developing more field
theory, in particular the notion of the splitting field of a polynomial f over a field K, which is the smallest field
containing K and all roots of f, one can show that two finite fields with the same number of elements are isomorphic,
i.e., there is a one-to-one mapping of one field onto the other that preserves multiplication and addition. Thus we
may speak of the finite field with q elements, usually denoted by Fq or GF(q).

Field of functions
Given a geometric object X, one can consider functions on such objects. Adding and multiplying them pointwise,
i.e., (f·g)(x) = f(x) · g(x) this leads to a field. However, due to the presence of possible zeros, i.e., points x ∈ X where
f(x) = 0, one has to take poles into account, i.e., formally allowing f(x) = ∞.
If X is an algebraic variety over F, then the rational functions V → F, i.e., functions defined almost everywhere, form
a field, the function field of V. Likewise, if X is a Riemann surface, then the meromorphic functions S → C form a
field. Under certain circumstances, namely when S is compact, S can be reconstructed from this field.

Local and global fields
Another important distinction in the realm of fields, especially with regard to number theory, are local fields and
global fields. Local fields are completions of global fields at a given place. For example, Q is a global field, and the
attached local fields are Qp and R (Ostrowski's theorem). Algebraic number fields and function fields over Fq are
further global fields. Studying arithmetic questions in global fields may sometimes be done by looking at the
corresponding questions locally – this technique is called local-global principle.

Some first theorems
• Every finite subgroup of the multiplicative group F× is cyclic. This applies in particular to Fq

×, it is cyclic of order
q − 1. In the introductory example, a generator of F4

× is the element A.
• From the point of view of algebraic geometry, fields are points, because the spectrum Spec F has only one point,

corresponding to the 0-ideal. This entails that a commutative ring is a field if and only if it has no ideals except
{0} and itself. Equivalently, an integral domain is field if and only if its Krull dimension is 0.

• Isomorphism extension theorem

Constructing fields

Closure operations
Assuming the axiom of choice, for every field F, there exists a field F, called the algebraic closure of F, which
contains F, is algebraic over F, which means that any element x of F satisfies a polynomial equation

fnxn + fn−1xn−1 + ... + f1x + f0 = 0, with coefficients fn, ..., f0 ∈ F,
and is algebraically closed, i.e., any such polynomial does have at least one solution in F. The algebraic closure is
unique up to isomorphism inducing the identity on F. However, in many circumstances in mathematics, it is not
appropriate to treat F as being uniquely determined by F, since the isomorphism above is not itself unique. In these
cases, one refers to such a F as an algebraic closure of F. A similar concept is the separable closure, containing all
roots of separable polynomials, instead of all polynomials.
For example, if F=Q, the algebraic closure Q is also called field of algebraic numbers. The field of algebraic 
numbers is an example of an algebraically closed field of characteristic zero; as such it satisfies the same first-order
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sentences as the field of complex numbers C.
In general, all algebraic closures of a field are isomorphic. However, there is in general no preferable isomorphism
between two closures. Likewise for separable closures.

Subfields and field extensions
A subfield is, informally, a small field contained in a bigger one. Formally, a subfield E of a field F is a subset
containing 0 and 1, closed under the operations + , −, · and multiplicative inverses and with its own operations
defined by restriction. For example, the real numbers contain several interesting subfields: the real algebraic
numbers, the computable numbers.
The notion of field extension lies at the heart of field theory, and as such is crucial to many other algebraic domains.
A field extension F / E is simply a field F and a subfield E ⊂ F. Constructing such a field extension F / E can be done
by "adding new elements" or adjoining elements to the field E. For example, given a field E, the set F = E(X) of
rational functions, i.e., equivalence classes of expressions of the kind

where p(X) and q(X) are polynomials with coefficients in E, and q is not the zero polynomial, forms a field. This is
the simplest example of a transcendental extension of E. If one allows formal power series (also called Laurent
series) in both denominator and numerator, one also gets a field, denoted E((X)).
In the above two cases, one is just adding a new symbol, namely X, which does not interact with elements of E. The
following construction is different in this respect. This idea will first be exemplified by R vs. C. As explained above,
C is a extension of R. The essential new element of C, in comparison to R is the imaginary unit i. It satisfies i2 = −1,
or equivalently

i2 + 1 = 0.
Yet equivalently phrased, i is a zero of the polynomial p(X) = X2 + 1. For any field F, the ring of polynomials with
coefficients in F is denoted by F[X]. The corresponding quotient C = R[X] / (X2 + 1) contains all real numbers and a
variable X. In C, however, the relation X2 + 1 = 0 holds. In other words, the element X ∈ C satisfies exactly the
property that i does. Therefore, the abstractly constructed C is isomorphic to the field C of complex numbers.
The above construction generalises to any irreducible polynomial in the polynomial ring E[X], i.e., a polynomial p(X)
that cannot be written as a product of non-constant polynomials. The quotient F = E[X] / (p(X)), where (p(X))
denotes the ideal generated by p(X), is again a field.
Alternatively, constructing such field extensions can also be done, if a bigger container is already given. Suppose
given a field E, and a field G containing E as a subfield, for example G could be the algebraic closure of E. Let x be
an element of G not in E. Then there is a smallest subfield of G containing E and x, denoted F = E(x) and called field
extension F / E generated by x in G. Such extensions are also called simple extensions. Many extensions are of this
type, see the primitive element theorem. For instance, Q(i) is the subfield of C consisting of all numbers of the form
a + bi where both a and b are rational numbers.
One distinguishes between extensions having various qualities. For example, an extension K of a field k is called
algebraic, if every element of K is a root of some polynomial with coefficients in k. Otherwise, the extension is
called transcendental. The aim of Galois theory is the study of algebraic extensions of a field.
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Rings vs. fields
Adding multiplicative inverses to an integral domain R yields the field of fractions of R. For example, the field of
fractions of the integers Z is just Q. Also, the field F(X) is the quotient field of the ring of polynomials F[X]. Getting
back the ring from the field is sometimes possible; see discrete valuation ring.
Another method to obtain a field from a commutative ring R is taking the quotient R / m, where m is any maximal
ideal of R. The above construction of F = E[X] / (p(X)), is an example, because the irreducibility of the polynomial
p(X) is equivalent to the maximality of the ideal generated by this polynomial. Another example are the finite fields
Fp = Z / pZ.

Ultraproducts
If I is an index set, U is an ultrafilter on I, and Fi is a field for every i in I, the ultraproduct of the Fi with respect to U
is a field.
For example, a non-principal ultraproduct of finite fields is a pseudo finite field, i.e., a PAC field having exactly one
extension of any degree. This construction is important to the study of the elementary theory of finite fields.

Galois theory
Galois theory aims to study the algebraic extensions of a field by studying the symmetry in the arithmetic operations
of addition and multiplication. The fundamental theorem of Galois theory shows that there is a strong relation
between the structure of the symmetry group and the set of algebraic extensions.
In the case where F / E is a finite (Galois) extension, Galois theory studies the algebraic extensions of E that are
subfields of F. Such fields are called intermediate extensions. Specifically, the Galois group of F over E, denoted
Gal(F/E), is the group of field automorphisms of F that are trivial on E (i.e., the bijections σ : F → F that preserve
addition and multiplication and that send elements of E to themselves), and the fundamental theorem of Galois
theory states that there is a one-to-one correspondence between subgroups of Gal(F/E) and the set of intermediate
extensions of the extension F/E. The theorem, in fact, gives an explicit correspondence and further properties.
To study all (separable) algebraic extensions of E at once, one must consider the absolute Galois group of E, defined
as the Galois group of the separable closure, Esep, of E over E (i.e., Gal(Esep/E). It is possible that the degree of this
extension is infinite (as in the case of E = Q). It is thus necessary to have a notion of Galois group for an infinite
algebraic extension. The Galois group in this case is obtained as a "limit" (specifically an inverse limit) of the Galois
groups of the finite Galois extensions of E. In this way, it acquires a topology[6] . The fundamental theorem of Galois
theory can be generalized to the case of infinite Galois extensions by taking into consideration the topology of the
Galois group, and in the case of Esep/E it states that there this a one-to-one correspondence between closed
subgroups of Gal(Esep/E) and the set of all separable algebraic extensions of E (technically, one only obtains those
separable algebraic extensions of E that occur as subfields of the chosen separable closure Esep, but since all
separable closures of E are isomorphic, choosing a different separable closure would give the same Galois group and
thus an "equivalent" set of algebraic extensions).
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Generalizations
There are also proper classes with field structure, which are sometimes called Fields, with a capital F:
• The surreal numbers form a Field containing the reals, and would be a field except for the fact that they are a

proper class, not a set. The set of all surreal numbers with birthday smaller than some inaccessible cardinal form a
field.

• The nimbers form a Field. The set of nimbers with birthday smaller than 22n, the nimbers with birthday smaller
than any infinite cardinal are all examples of fields.

In a different direction, differential fields are fields equipped with a derivation. For example, the field R(X), together
with the standard derivative of polynomials forms a differential field. These fields are central to differential Galois
theory. Exponential fields, meanwhile, are fields equipped with an exponential function that provides a
homomorphism between the additive and multiplicative groups within the field. The usual exponential function
makes the real and complex numbers exponential fields, denoted Rexp and Cexp respectively.
Generalizing in a more categorical direction yields the field with one element and related objects.

Exponentiation
One does not in general study generalization of field with three binary operations. The familiar addition/subtraction,
multiplication/division, exponentiation/root-extraction operations from the natural numbers to the reals, each built up
in terms of iteration of the last, mean that generalizing exponentiation as a binary operation is tempting, but has
generally not proven fruitful; instead, an exponential field assumes a unary exponential function from the additive
group to the multiplicative group, not a partially defined binary function. Note that the exponential operation of 
is neither associative nor commutative, nor has a unique inverse ( are both square roots of 4, for instance),
unlike addition and multiplication, and further is not defined for many pairs – for example, does
not define a single number. These all show that even for rational numbers exponentiation is not nearly as
well-behaved as addition and multiplication, which is why one does not in general axiomatize exponentiation.

Applications
The concept of a field is of use, for example, in defining vectors and matrices, two structures in linear algebra whose
components can be elements of an arbitrary field.
Finite fields are used in number theory, Galois theory and coding theory, and again algebraic extension is an
important tool.
Fields of characteristic 2 are useful in computer science.

See also
• Glossary of field theory for more definitions in field theory.
• Ring
• Vector space
• Category of fields
• Vector spaces without fields
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Topology

A Möbius strip, an object with only one surface and one edge.
Such shapes are an object of study in topology.

Topology (from the Greek τόπος, “place”, and λόγος,
“study”) is a major area of mathematics concerned with
spatial properties that are preserved under continuous
deformations of objects, for example, deformations that
involve stretching, but no tearing or gluing. It emerged
through the development of concepts from geometry and
set theory, such as space, dimension, and transformation.

Ideas that are now classified as topological were
expressed as early as 1736, and toward the end of the
19th century, a distinct discipline developed, which was
referred to in Latin as the geometria situs (“geometry of
place”) or analysis situs (Greek-Latin for “picking apart of
place”), and which later acquired the modern name of topology. By the middle of the 20th century, topology had
become an important area of study within mathematics.

The word topology is used both for the mathematical discipline and for a family of sets with certain properties that
are used to define a topological space, a basic object of topology. Of particular importance are homeomorphisms,
which can be defined as continuous functions with a continuous inverse. For instance, the function y = x3 is a
homeomorphism of the real line.
Topology includes many subfields. The most basic and traditional division within topology is point-set topology, 
which establishes the foundational aspects of topology and investigates concepts inherent to topological spaces 
(basic examples include compactness and connectedness); algebraic topology, which generally tries to measure 
degrees of connectivity using algebraic constructs such as homotopy groups and homology; and geometric
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topology, which primarily studies manifolds and their embeddings (placements) in other manifolds. Some of the
most active areas, such as low dimensional topology and graph theory, do not fit neatly in this division.
See also: topology glossary for definitions of some of the terms used in topology and topological space for a more
technical treatment of the subject.

History

The Seven Bridges of Königsberg is a famous problem solved by
Euler.

Topology began with the investigation of certain
questions in geometry. Euler's 1736 paper on Seven
Bridges of Königsberg is regarded as one of the first
academic treatises in modern topology.

The term "Topologie" was introduced in German in 1847
by Johann Benedict Listing in Vorstudien zur Topologie,
Vandenhoeck und Ruprecht, Göttingen, pp. 67, 1848,
who had used the word for ten years in correspondence
before its first appearance in print. "Topology," its
English form, was introduced in 1883 in the journal
Nature to distinguish "qualitative geometry from the
ordinary geometry in which quantitative relations chiefly
are treated". The term topologist in the sense of a
specialist in topology was used in 1905 in the magazine
Spectator. However, none of these uses corresponds

exactly to the modern definition of topology.

Modern topology depends strongly on the ideas of set theory, developed by Georg Cantor in the later part of the 19th
century. Cantor, in addition to setting down the basic ideas of set theory, considered point sets in Euclidean space, as
part of his study of Fourier series.

Henri Poincaré published Analysis Situs in 1895, introducing the concepts of homotopy and homology, which are
now considered part of algebraic topology.
Maurice Fréchet, unifying the work on function spaces of Cantor, Volterra, Arzelà, Hadamard, Ascoli, and others,
introduced the metric space in 1906. A metric space is now considered a special case of a general topological space.
In 1914, Felix Hausdorff coined the term "topological space" and gave the definition for what is now called a
Hausdorff space. In current usage, a topological space is a slight generalization of Hausdorff spaces, given in 1922
by Kazimierz Kuratowski.
For further developments, see point-set topology and algebraic topology.

Elementary introduction
Topology, as a branch of mathematics, can be formally defined as "the study of qualitative properties of certain
objects (called topological spaces) that are invariant under certain kind of transformations (called continuous maps),
especially those properties that are invariant under a certain kind of equivalence (called homeomorphism)."
The term topology is also used to refer to a structure imposed upon a set X, a structure which essentially
'characterizes' the set X as a topological space by taking proper care of properties such as convergence,
connectedness and continuity, upon transformation.
Topological spaces show up naturally in almost every branch of mathematics. This has made topology one of the
great unifying ideas of mathematics.
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The motivating insight behind topology is that some geometric problems depend not on the exact shape of the
objects involved, but rather on the way they are put together. For example, the square and the circle have many
properties in common: they are both one dimensional objects (from a topological point of view) and both separate
the plane into two parts, the part inside and the part outside.
One of the first papers in topology was the demonstration, by Leonhard Euler, that it was impossible to find a route
through the town of Königsberg (now Kaliningrad) that would cross each of its seven bridges exactly once. This
result did not depend on the lengths of the bridges, nor on their distance from one another, but only on connectivity
properties: which bridges are connected to which islands or riverbanks. This problem, the Seven Bridges of
Königsberg, is now a famous problem in introductory mathematics, and led to the branch of mathematics known as
graph theory.

A continuous deformation (homeomorphism) of a coffee cup into
a doughnut (torus) and back.

Similarly, the hairy ball theorem of algebraic topology
says that "one cannot comb the hair flat on a hairy ball
without creating a cowlick." This fact is immediately
convincing to most people, even though they might not
recognize the more formal statement of the theorem, that
there is no nonvanishing continuous tangent vector field
on the sphere. As with the Bridges of Königsberg, the
result does not depend on the exact shape of the sphere; it
applies to pear shapes and in fact any kind of smooth
blob, as long as it has no holes.

In order to deal with these problems that do not rely on
the exact shape of the objects, one must be clear about
just what properties these problems do rely on. From this
need arises the notion of homeomorphism. The
impossibility of crossing each bridge just once applies to
any arrangement of bridges homeomorphic to those in
Königsberg, and the hairy ball theorem applies to any
space homeomorphic to a sphere.

Intuitively two spaces are homeomorphic if one can be deformed into the other without cutting or gluing. A
traditional joke is that a topologist can't distinguish a coffee mug from a doughnut, since a sufficiently pliable
doughnut could be reshaped to the form of a coffee cup by creating a dimple and progressively enlarging it, while
shrinking the hole into a handle. A precise definition of homeomorphic, involving a continuous function with a
continuous inverse, is necessarily more technical.
Homeomorphism can be considered the most basic topological equivalence. Another is homotopy equivalence. This
is harder to describe without getting technical, but the essential notion is that two objects are homotopy equivalent if
they both result from "squishing" some larger object.

Equivalence classes of the English alphabet in uppercase sans-serif font (Myriad); left -
homeomorphism, right - homotopy equivalence
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An introductory exercise is to classify the uppercase letters of the English alphabet according to homeomorphism
and homotopy equivalence. The result depends partially on the font used. The figures use a sans-serif font named
Myriad. Notice that homotopy equivalence is a rougher relationship than homeomorphism; a homotopy equivalence
class can contain several of the homeomorphism classes. The simple case of homotopy equivalence described above
can be used here to show two letters are homotopy equivalent, e.g. O fits inside P and the tail of the P can be
squished to the "hole" part.
Thus, the homeomorphism classes are: one hole two tails, two holes no tail, no holes, one hole no tail, no holes three
tails, a bar with four tails (the "bar" on the K is almost too short to see), one hole one tail, and no holes four tails.
The homotopy classes are larger, because the tails can be squished down to a point. The homotopy classes are: one
hole, two holes, and no holes.
To be sure we have classified the letters correctly, we not only need to show that two letters in the same class are
equivalent, but that two letters in different classes are not equivalent. In the case of homeomorphism, this can be
done by suitably selecting points and showing their removal disconnects the letters differently. For example, X and
Y are not homeomorphic because removing the center point of the X leaves four pieces; whatever point in Y
corresponds to this point, its removal can leave at most three pieces. The case of homotopy equivalence is harder and
requires a more elaborate argument showing an algebraic invariant, such as the fundamental group, is different on
the supposedly differing classes.
Letter topology has some practical relevance in stencil typography. The font Braggadocio, for instance, has stencils
that are made of one connected piece of material.

Mathematical definition
Let X be any set and let T be a family of subsets of X. Then T is a topology on X iff
1. Both the empty set and X are elements of T.
2. Any union of arbitrarily many elements of T is an element of T.
3. Any intersection of finitely many elements of T is an element of T.
If T is a topology on X, then the pair (X, T) is called a topological space, and the notation X

T 
is used to denote a set

X endowed with the particular topology T.
The open sets in X are defined to be the members of T; note that in general not all subsets of X need be in T. A
subset of X is said to be closed if its complement is in T (i.e., its complement is open). A subset of X may be open,
closed, both, or neither.
A function or map from one topological space to another is called continuous if the inverse image of any open set is
open. If the function maps the real numbers to the real numbers (both spaces with the Standard Topology), then this
definition of continuous is equivalent to the definition of continuous in calculus. If a continuous function is
one-to-one and onto and if the inverse of the function is also continuous, then the function is called a
homeomorphism and the domain of the function is said to be homeomorphic to the range. Another way of saying this
is that the function has a natural extension to the topology. If two spaces are homeomorphic, they have identical
topological properties, and are considered to be topologically the same. The cube and the sphere are homeomorphic,
as are the coffee cup and the doughnut. But the circle is not homeomorphic to the doughnut.
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Topology topics

Some theorems in general topology
• Every closed interval in R of finite length is compact. More is true: In Rn, a set is compact if and only if it is

closed and bounded. (See Heine-Borel theorem).
• Every continuous image of a compact space is compact.
• Tychonoff's theorem: The (arbitrary) product of compact spaces is compact.
• A compact subspace of a Hausdorff space is closed.
• Every continuous bijection from a compact space to a Hausdorff space is necessarily a homeomorphism.
• Every sequence of points in a compact metric space has a convergent subsequence.
• Every interval in R is connected.
• Every compact m-manifold can be embedded in some Euclidean space Rn.
• The continuous image of a connected space is connected.
• A metric space is Hausdorff, also normal and paracompact.
• The metrization theorems provide necessary and sufficient conditions for a topology to come from a metric.
• The Tietze extension theorem: In a normal space, every continuous real-valued function defined on a closed

subspace can be extended to a continuous map defined on the whole space.
• Any open subspace of a Baire space is itself a Baire space.
• The Baire category theorem: If X is a complete metric space or a locally compact Hausdorff space, then the

interior of every union of countably many nowhere dense sets is empty.
• On a paracompact Hausdorff space every open cover admits a partition of unity subordinate to the cover.
• Every path-connected, locally path-connected and semi-locally simply connected space has a universal cover.
General topology also has some surprising connections to other areas of mathematics. For example:
• In number theory, Furstenberg's proof of the infinitude of primes.
See also some counter-intuitive theorems, e.g. the Banach-Tarski one.

Some useful notions from algebraic topology
See also list of algebraic topology topics.
• Homology and cohomology: Betti numbers, Euler characteristic, degree of a continuous mapping.
• Operations: cup product, Massey product
• Intuitively-attractive applications: Brouwer fixed-point theorem, Hairy ball theorem, Borsuk-Ulam theorem, Ham

sandwich theorem.
• Homotopy groups (including the fundamental group).
• Chern classes, Stiefel-Whitney classes, Pontryagin classes.
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Generalizations
Occasionally, one needs to use the tools of topology but a "set of points" is not available. In pointless topology one
considers instead the lattice of open sets as the basic notion of the theory, while Grothendieck topologies are certain
structures defined on arbitrary categories which allow the definition of sheaves on those categories, and with that the
definition of quite general cohomology theories.

Topology in art and literature
• Some M. C. Escher works illustrate topological concepts, such as Möbius strips and non-orientable spaces.

See also
• List of algebraic topology topics
• List of general topology topics
• List of geometric topology topics
• Publications in topology
• List of topology topics
• Topology glossary
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Topological space

Four examples and two non-examples of topologies on the three-point set {1,2,3}.
The bottom-left example is not a topology because the union {2,3} of {2} and {3}
is missing; the bottom-right example is not a topology because the intersection {2}

of {1,2} and {2,3} is missing.

Topological spaces are mathematical
structures that allow the formal definition of
concepts such as convergence,
connectedness, and continuity. They appear
in virtually every branch of modern
mathematics and are a central unifying
notion. The branch of mathematics that
studies topological spaces in their own right
is called topology.

Definition

A topological space is a set X together with
, a collection of subsets of X, satisfying

the following axioms:

1. The empty set and X are in .
2. The union of any collection of sets in 

is also in .
3. The intersection of any finite collection

of sets in is also in .

The collection is called a topology on X. The elements of X are usually called points, though they can be any
mathematical objects. A topological space in which the points are functions is called a function space. The sets in 
are the open sets, and their complements in X are called closed sets. A set may be neither closed nor open, either
closed or open, or both. A set that is both closed and open is called a clopen set.

Examples
1. X = {1, 2, 3, 4} and collection = of only the two subsets of X required by the axioms form a topology, the

trivial topology.
2. X = {1, 2, 3, 4} and collection = of six subsets of X form another topology.
3. X = {1, 2, 3, 4} and collection = P(X) (the power set of X) form a third topology, the discrete topology.
4. X = Z, the set of integers, and collection equal to all finite subsets of the integers plus Z itself is not a topology,

because (for example) the union of all finite sets not containing zero is infinite but is not all of Z, and so is not in
.
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Equivalent definitions
There are many other equivalent ways to define a topological space. (In other words, each of the following defines a
category equivalent to the category of topological spaces above.) For example, using de Morgan's laws, the axioms
defining open sets above become axioms defining closed sets:
1. The empty set and X are closed.
2. The intersection of any collection of closed sets is also closed.
3. The union of any pair of closed sets is also closed.
Using these axioms, another way to define a topological space is as a set X together with a collection of subsets of
X satisfying the following axioms:
1. The empty set and X are in .
2. The intersection of any collection of sets in is also in .
3. The union of any pair of sets in is also in .
Under this definition, the sets in the topology are the closed sets, and their complements in X are the open sets.
Another way to define a topological space is by using the Kuratowski closure axioms, which define the closed sets as
the fixed points of an operator on the power set of X.
A neighbourhood of a point x is any set that contains an open set containing x. The neighbourhood system at x
consists of all neighbourhoods of x. A topology can be determined by a set of axioms concerning all neighbourhood
systems.
A net is a generalisation of the concept of sequence. A topology is completely determined if for every net in X the set
of its accumulation points is specified.

Comparison of topologies
A variety of topologies can be placed on a set to form a topological space. When every set in a topology is also in
a topology , we say that is finer than , and is coarser than . A proof which relies only on the
existence of certain open sets will also hold for any finer topology, and similarly a proof that relies only on certain
sets not being open applies to any coarser topology. The terms larger and smaller are sometimes used in place of
finer and coarser, respectively. The terms stronger and weaker are also used in the literature, but with little
agreement on the meaning, so one should always be sure of an author's convention when reading.
The collection of all topologies on a given fixed set X forms a complete lattice: if F = { : in A} is a collection
of topologies on X, then the meet of F is the intersection of F, and the join of F is the meet of the collection of all
topologies on X which contain every member of F.

Continuous functions
A function between topological spaces is said to be continuous if the inverse image of every open set is open. This
is an attempt to capture the intuition that there are no "breaks" or "separations" in the function. A homeomorphism is
a bijection that is continuous and whose inverse is also continuous. Two spaces are said to be homeomorphic if there
exists a homeomorphism between them. From the standpoint of topology, homeomorphic spaces are essentially
identical.
In category theory, Top, the category of topological spaces with topological spaces as objects and continuous
functions as morphisms is one of the fundamental categories in mathematics. The attempt to classify the objects of
this category (up to homeomorphism) by invariants has motivated and generated entire areas of research, such as
homotopy theory, homology theory, and K-theory, to name just a few.

http://en.wikipedia.org/w/index.php?title=Characterizations_of_the_category_of_topological_spaces
http://en.wikipedia.org/w/index.php?title=De_Morgan%27s_laws
http://en.wikipedia.org/w/index.php?title=Kuratowski_closure_axioms
http://en.wikipedia.org/w/index.php?title=Operator
http://en.wikipedia.org/w/index.php?title=Power_set
http://en.wikipedia.org/w/index.php?title=Neighbourhood_%28topology%29
http://en.wikipedia.org/w/index.php?title=Net_%28mathematics%29
http://en.wikipedia.org/w/index.php?title=Sequence
http://en.wikipedia.org/w/index.php?title=Topology_glossary
http://en.wikipedia.org/w/index.php?title=Finer_topology
http://en.wikipedia.org/w/index.php?title=Coarser_topology
http://en.wikipedia.org/w/index.php?title=Complete_lattice
http://en.wikipedia.org/w/index.php?title=Infimum%23Infima_within_partially_ordered_sets
http://en.wikipedia.org/w/index.php?title=Supremum%23Suprema_within_partially_ordered_sets
http://en.wikipedia.org/w/index.php?title=Function_%28mathematics%29
http://en.wikipedia.org/w/index.php?title=Continuity_%28topology%29
http://en.wikipedia.org/w/index.php?title=Inverse_image
http://en.wikipedia.org/w/index.php?title=Homeomorphism
http://en.wikipedia.org/w/index.php?title=Inverse_function
http://en.wikipedia.org/w/index.php?title=Category_of_topological_spaces
http://en.wikipedia.org/w/index.php?title=Object_%28category_theory%29
http://en.wikipedia.org/w/index.php?title=Invariant_%28mathematics%29
http://en.wikipedia.org/w/index.php?title=Homotopy
http://en.wikipedia.org/w/index.php?title=K-theory


Topological space 66

Examples of topological spaces
A given set may have many different topologies. If a set is given a different topology, it is viewed as a different
topological space. Any set can be given the discrete topology in which every subset is open. The only convergent
sequences or nets in this topology are those that are eventually constant. Also, any set can be given the trivial
topology (also called the indiscrete topology), in which only the empty set and the whole space are open. Every
sequence and net in this topology converges to every point of the space. This example shows that in general
topological spaces, limits of sequences need not be unique. However, often topological spaces are required to be
Hausdorff spaces where limit points are unique.
There are many ways of defining a topology on R, the set of real numbers. The standard topology on R is generated
by the open intervals. The set of all open intervals forms a base or basis for the topology, meaning that every open
set is a union of some collection of sets from the base. In particular, this means that a set is open if there exists an
open interval of non zero radius about every point in the set. More generally, the Euclidean spaces Rn can be given a
topology. In the usual topology on Rn the basic open sets are the open balls. Similarly, C and Cn have a standard
topology in which the basic open sets are open balls.
Every metric space can be given a metric topology, in which the basic open sets are open balls defined by the metric.
This is the standard topology on any normed vector space. On a finite-dimensional vector space this topology is the
same for all norms.
Many sets of operators in functional analysis are endowed with topologies that are defined by specifying when a
particular sequence of functions converges to the zero function.
Any local field has a topology native to it, and this can be extended to vector spaces over that field.
Every manifold has a natural topology since it is locally Euclidean. Similarly, every simplex and every simplicial
complex inherits a natural topology from Rn.
The Zariski topology is defined algebraically on the spectrum of a ring or an algebraic variety. On Rn or Cn, the
closed sets of the Zariski topology are the solution sets of systems of polynomial equations.
A linear graph has a natural topology that generalises many of the geometric aspects of graphs with vertices and
edges.
The Sierpiński space is the simplest non-discrete topological space. It has important relations to the theory of
computation and semantics.
There exist numerous topologies on any given finite set. Such spaces are called finite topological spaces. Finite
spaces are sometimes used to provide examples or counterexamples to conjectures about topological spaces in
general.
Any set can be given the cofinite topology in which the open sets are the empty set and the sets whose complement
is finite. This is the smallest T1 topology on any infinite set.
Any set can be given the cocountable topology, in which a set is defined to be open if it is either empty or its
complement is countable. When the set is uncountable, this topology serves as a counterexample in many situations.
The real line can also be given the lower limit topology. Here, the basic open sets are the half open intervals [a, b).
This topology on R is strictly finer than the Euclidean topology defined above; a sequence converges to a point in
this topology if and only if it converges from above in the Euclidean topology. This example shows that a set may
have many distinct topologies defined on it.
If Γ is an ordinal number, then the set Γ = [0, Γ) may be endowed with the order topology generated by the intervals
(a, b), [0, b) and (a, Γ) where a and b are elements of Γ.
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Topological constructions
Every subset of a topological space can be given the subspace topology in which the open sets are the intersections
of the open sets of the larger space with the subset. For any indexed family of topological spaces, the product can be
given the product topology, which is generated by the inverse images of open sets of the factors under the projection
mappings. For example, in finite products, a basis for the product topology consists of all products of open sets. For
infinite products, there is the additional requirement that in a basic open set, all but finitely many of its projections
are the entire space.
A quotient space is defined as follows: if X is a topological space and Y is a set, and if f : X  →  Y is a surjective
function, then the quotient topology on Y is the collection of subsets of Y that have open inverse images under f. In
other words, the quotient topology is the finest topology on Y for which f is continuous. A common example of a
quotient topology is when an equivalence relation is defined on the topological space X. The map f is then the natural
projection onto the set of equivalence classes.
The Vietoris topology on the set of all non-empty subsets of a topological space X, named for Leopold Vietoris, is
generated by the following basis: for every n-tuple U1, ..., Un of open sets in X, we construct a basis set consisting of
all subsets of the union of the Ui which have non-empty intersection with each Ui.

Classification of topological spaces
Topological spaces can be broadly classified, up to homeomorphism, by their topological properties. A topological
property is a property of spaces that is invariant under homeomorphisms. To prove that two spaces are not
homeomorphic it is sufficient to find a topological property which is not shared by them. Examples of such
properties include connectedness, compactness, and various separation axioms.
See the article on topological properties for more details and examples.

Topological spaces with algebraic structure
For any algebraic objects we can introduce the discrete topology, under which the algebraic operations are
continuous functions. For any such structure which is not finite, we often have a natural topology which is
compatible with the algebraic operations in the sense that the algebraic operations are still continuous. This leads to
concepts such as topological groups, topological vector spaces, topological rings and local fields.

Topological spaces with order structure
• Spectral. A space is spectral if and only if it is the prime spectrum of a ring (Hochster theorem).
• Specialization preorder. In a space the specialization (or canonical) preorder is defined by x ≤ y if and only if

cl{x} ⊆ cl{y}.

Specializations and generalizations
The following spaces and algebras are either more specialized or more general than the topological spaces discussed
above.
• Proximity spaces provide a notion of closeness of two sets.
• Metric spaces embody a metric, a precise notion of distance between points.
• Uniform spaces axiomatize ordering the distance between distinct points.
• Cauchy spaces axiomatize the ability to test whether a net is Cauchy. Cauchy spaces provide a general setting for

studying completions.
• Convergence spaces capture some of the features of convergence of filters.
• σ-algebras build on the notion of measurable sets.
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See also
• Kolmogorov space (T0)
• accessible/Fréchet space (T1)
• Hausdorff space (T2)
• completely Hausdorff space and Urysohn space (T2½)
• regular space and regular Hausdorff space (T3)
• Tychonoff space and completely regular space (T3½)
• normal Hausdorff space (T4)
• completely normal Hausdorff space (T5)
• perfectly normal Hausdorff space (T6)
• Space (mathematics)
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Vector space

Vector addition and scalar multiplication: a vector v
(blue) is added to another vector w (red, upper

illustration). Below, w is stretched by a factor of 2,
yielding the sum v + 2·w.

A vector space is a mathematical structure formed by a collection
of vectors: objects that may be added together and multiplied
("scaled") by numbers, called scalars in this context. Scalars are
often taken to be real numbers, but one may also consider vector
spaces with scalar multiplication by complex numbers, rational
numbers, or even more general fields instead. The operations of
vector addition and scalar multiplication have to satisfy certain
requirements, called axioms, listed below. An example of a vector
space is that of Euclidean vectors which are often used to represent
physical quantities such as forces: any two forces (of the same
type) can be added to yield a third, and the multiplication of a
force vector by a real factor is another force vector. In the same
vein, but in more geometric parlance, vectors representing displacements in the plane or in three-dimensional space
also form vector spaces.

Vector spaces are the subject of linear algebra and are well understood from this point of view, since vector spaces
are characterized by their dimension, which, roughly speaking, specifies the number of independent directions in the
space. The theory is further enhanced by introducing on a vector space some additional structure, such as a norm or
inner product. Such spaces arise naturally in mathematical analysis, mainly in the guise of infinite-dimensional
function spaces whose vectors are functions. Analytical problems call for the ability to decide if a sequence of
vectors converges to a given vector. This is accomplished by considering vector spaces with additional data, mostly
spaces endowed with a suitable topology, thus allowing the consideration of proximity and continuity issues. These
topological vector spaces, in particular Banach spaces and Hilbert spaces, have a richer theory.
Historically, the first ideas leading to vector spaces can be traced back as far as 17th century's analytic geometry,
matrices, systems of linear equations, and Euclidean vectors. The modern, more abstract treatment, first formulated
by Giuseppe Peano in the late 19th century, encompasses more general objects than Euclidean space, but much of
the theory can be seen as an extension of classical geometric ideas like lines, planes and their higher-dimensional
analogs.
Today, vector spaces are applied throughout mathematics, science and engineering. They are the appropriate
linear-algebraic notion to deal with systems of linear equations; offer a framework for Fourier expansion, which is
employed in image compression routines; or provide an environment that can be used for solution techniques for
partial differential equations. Furthermore, vector spaces furnish an abstract, coordinate-free way of dealing with
geometrical and physical objects such as tensors. This in turn allows the examination of local properties of manifolds
by linearization techniques. Vector spaces may be generalized in several directions, leading to more advanced
notions in geometry and abstract algebra.

Introduction and definition
The concept of vector space relies on the idea of vectors. A first example of vectors are arrows in a fixed plane,
starting at one fixed point. Such vectors are called Euclidean vectors and can be used to describe physical forces or
velocities or further entities having both a magnitude and a direction. In general, the term vector is used for objects
on which two operations can be exerted. The concrete nature of these operations depends on the type of vector under
consideration, and can often be described by different means, e.g. geometric or algebraic. In view of the algebraic
ideas behind these concepts explained below, the two operations are called vector addition and scalar multiplication.
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Vector addition means that two vectors v and w can be "added" to yield the sum v + w, another vector. The sum of
two arrow vectors is calculated by constructing the parallelogram two of whose sides are the given vectors v and w.
The sum of the two is given by the diagonal arrow of the parallelogram, starting at the common point of the two
vectors (left-most image below).
Scalar multiplication combines a number—also called scalar—r and a vector v. In the example, a vector represented
by an arrow is multiplied by a scalar by dilating or shrinking the arrow accordingly: if r = 2 (r = 1/4), the resulting
vector r · w has the same direction as w, but is stretched to the double length (shrunk to a fourth of the length,
respectively) of w (right image below). Equivalently 2 · w is the sum w + w. In addition, for negative factors, the
direction of the arrow is swapped: (−1) · v = −v has the opposite direction and the same length as v (blue vector in
the right image).

Another example of vectors is provided by pairs of real numbers x and y, denoted (x, y). (The order of the
components x and y is significant, so such a pair is also called an ordered pair.) These pairs form vectors, by defining
vector addition and scalar multiplication componentwise, i.e.

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)
and

r · (x, y) = (rx, ry).

Definition
Incorporating these two and many more examples in one notion of vector space is achieved via an abstract algebraic
definition that disregards the concrete nature of the particular type of vectors. However, essential properties of vector
addition and scalar multiplication present in the examples above are required to hold in any vector space. For
example, in the algebraic example of vectors as pairs above, the result of addition does not depend on the order of
the summands:

(x
v
, y

v
) + (x

w
, y

w
) = (x

w
, y

w
) + (x

v
, y

v
),

Likewise, in the geometric example of vectors using arrows, v + w = w + v, since the parallelogram defining the sum
of the vectors is independent of the order of the vectors.
To reach utmost generality, the definition of a vector space relies on the notion of a field F. A field is, essentially, a
set of numbers possessing addition, subtraction, multiplication and division operations.[1] Many vector spaces
encountered in mathematics and sciences use the field of real numbers, but rational or complex numbers and other
fields are also important. The underlying field F is fixed throughout and is specified by speaking of F-vector spaces
or vector spaces over F. If F is R or C, the field of real and complex numbers, respectively, the denominations real
and complex vector spaces are also common. The elements of F are called scalars.
A vector space is a set V together with two binary operations, operations that combine two entities to yield a third,
called vector addition and scalar multiplication. The elements of V are called vectors and are denoted in boldface.[2]

The sum of two vectors is denoted v + w, the product of a scalar a and a vector v is denoted a · v or av.
To qualify as a vector space, addition and multiplication have to adhere to a number of requirements called axioms.
They generalize properties of the vectors introduced above.[3] In the list below, let u, v, w be arbitrary vectors in V,
and a, b be scalars in F.
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Axiom Signification

Associativity of addition u + (v + w) = (u + v) + w.

Commutativity of addition v + w = w + v.

Identity element of addition There exists an element 0 ∈ V, called the zero vector, such that v + 0 = v for all v ∈ V.

Inverse elements of addition For all v ∈ V, there exists an element w ∈ V, called the additive inverse of v, such that v + w =
0. The additive inverse is denoted −v.

Distributivity of scalar multiplication with respect
to vector addition

a(v + w) = av + aw.

Distributivity of scalar multiplication with respect
to field addition

(a + b)v = av + bv.

Compatibility of scalar multiplication with field
multiplication

a(bv) = (ab)v [4]

Identity element of scalar multiplication 1v = v, where 1 denotes the multiplicative identity in F.

These axioms entail that subtraction of two vectors and division by a (non-zero) scalar can be performed via
v − w = v + (−w),
v / a = (1 / a) · v.

In contrast to the intuition stemming from vectors in the plane and higher-dimensional cases, there is, in general
vector spaces, no notion of nearness, angles or distances. To deal with such matters, particular types of vector spaces
are introduced; see below.

Alternative formulations and elementary consequences
The requirement that vector addition and scalar multiplication be binary operations includes (by definition of binary
operations) a property called closure: that u + v and av are in V for all a in F, and u, v in V. Some older sources
mention these properties as separate axioms.[5]

In the parlance of abstract algebra, the first four axioms can be subsumed by requiring the set of vectors to be an
abelian group under addition. The remaining axioms give this group an F-module structure. In other words there is a
ring homomorphism ƒ from the field F into the endomorphism ring of the group of vectors. Then scalar
multiplication av is defined as (ƒ(a))(v).[6]

There are a number of direct consequences of the vector space axioms. Some of them derive from elementary group
theory, applied to the additive group of vectors: for example the zero vector 0 of V and the additive inverse −v of any
vector v are unique. Other properties follow from the distributive law, for example av equals 0 if and only if a equals
0 or v equals 0.

History
Vector spaces stem from affine geometry, via the introduction of coordinates in the plane or three-dimensional
space. Around 1636, Descartes and Fermat founded analytic geometry by identifying solutions to an equation of two
variables with points on a plane curve.[7] To achieve geometric solutions without using coordinates, Bolzano
introduced, in 1804, certain operations on points, lines and planes, which are predecessors of vectors.[8] This work
was made use of in the conception of barycentric coordinates by Möbius in 1827.[9] The foundation of the definition
of vectors was Bellavitis' notion of the bipoint, an oriented segment one of whose ends is the origin and the other one
a target. Vectors were reconsidered with the presentation of complex numbers by Argand and Hamilton and the
inception of quaternions by the latter.[10] They are elements in R2 and R4; treating them using linear combinations
goes back to Laguerre in 1867, who also defined systems of linear equations.
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In 1857, Cayley introduced the matrix notation which allows for a harmonization and simplification of linear maps.
Around the same time, Grassmann studied the barycentric calculus initiated by Möbius. He envisaged sets of abstract
objects endowed with operations.[11] In his work, the concepts of linear independence and dimension, as well as
scalar products are present. Actually Grassmann's 1844 work exceeds the framework of vector spaces, since his
considering multiplication, too, led him to what are today called algebras. Peano was the first to give the modern
definition of vector spaces and linear maps in 1888.[12]

An important development of vector spaces is due to the construction of function spaces by Lebesgue. This was later
formalized by Banach and Hilbert, around 1920.[13] At that time, algebra and the new field of functional analysis
began to interact, notably with key concepts such as spaces of p-integrable functions and Hilbert spaces.[14] Vector
spaces, including infinite-dimensional ones, then became a firmly established notion, and many mathematical
branches started making use of this concept.

Examples

Coordinate and function spaces
The first example of a vector space over a field F is the field itself, equipped with its standard addition and
multiplication. This is the case n = 1 of a vector space usually denoted Fn, known as the coordinate space whose
elements are n-tuples (sequences of length n):

(a1, a2, ..., an), where the ai are elements of F.[15]

The case F = R and n = 2 was discussed in the introduction above. Infinite coordinate sequences, and more generally
functions from any fixed set Ω to a field F also form vector spaces, by performing addition and scalar multiplication
pointwise. That is, the sum of two functions ƒ and g is given by

(ƒ + g)(w) = ƒ(w) + g(w)
and similarly for multiplication. Such function spaces occur in many geometric situations, when Ω is the real line or
an interval, or other subsets of Rn. Many notions in topology and analysis, such as continuity, integrability or
differentiability are well-behaved with respect to linearity: sums and scalar multiples of functions possessing such a
property still have that property.[16] Therefore, the set of such functions are vector spaces. They are studied in greater
detail using the methods of functional analysis, see below. Algebraic constraints also yield vector spaces: the vector
space F[x] is given by polynomial functions:

ƒ(x) = r0 + r1x + ... + rn−1xn−1 + rnxn, where the coefficients r0, ..., rn are in F.[17]

Linear equations
Systems of homogeneous linear equations are closely tied to vector spaces.[18] For example, the solutions of

a + 3b + c = 0

4a + 2b + 2c = 0

are given by triples with arbitrary a, b = a/2, and c = −5a/2. They form a vector space: sums and scalar multiples of
such triples still satisfy the same ratios of the three variables; thus they are solutions, too. Matrices can be used to
condense multiple linear equations as above into one vector equation, namely

Ax = 0,

where A = is the matrix containing the coefficients of the given equations, x is the vector (a, b, c), Ax

denotes the matrix product and 0 = (0, 0) is the zero vector. In a similar vein, the solutions of homogeneous linear
differential equations form vector spaces. For example
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ƒ''(x) + 2ƒ'(x) + ƒ(x) = 0
yields ƒ(x) = a e−x + bx e−x, where a and b are arbitrary constants, and ex is the natural exponential function.

Field extensions
Field extensions F / E ("F over E") provide another class of examples of vector spaces, particularly in algebra and
algebraic number theory: a field F containing a smaller field E becomes an E-vector space, by the given
multiplication and addition operations of F.[19] For example the complex numbers are a vector space over R. A
particularly interesting type of field extension in number theory is Q(α), the extension of the rational numbers Q by a
fixed complex number α. Q(α) is the smallest field containing the rationals and a fixed complex number α. Its
dimension as a vector space over Q depends on the choice of α.

Bases and dimension

A vector v in R2 (blue) expressed in terms of different
bases: using the standard basis of R2 v = xe1 + ye2

(black), and using a different, non-orthogonal basis: v
= f1 + f2 (red).

Bases reveal the structure of vector spaces in a concise way. A
basis is defined as a (finite or infinite) set B = {vi}i ∈ I of vectors vi
indexed by some index set I that spans the whole space, and is
minimal with this property. The former means that any vector v
can be expressed as a finite sum (called linear combination of the
basis elements)

v = a1vi1 + a2vi2 + ... + anvin,
where the ak are scalars and vik (k = 1, ..., n) elements of the basis
B. Minimality, on the other hand, is made formal by requiring B to
be linearly independent. A set of vectors is said to be linearly
independent if none of its elements can be expressed as a linear
combination of the remaining ones. Equivalently, an equation

a1vi1 + a2vi2 + ... + anvin = 0
can only hold if all scalars a1, ..., an equal zero. Linear
independence ensures that the representation of any vector in
terms of basis vectors, the existence of which is guaranteed by the
requirement that the basis span V, is unique.[20] This is referred to as the coordinatized viewpoint of vector spaces,
by viewing basis vectors as generalizations of coordinate vectors x, y, z in R3 and similarly in higher-dimensional
cases.

The coordinate vectors e1 = (1, 0, ..., 0), e2 = (0, 1, 0, ..., 0), to en = (0, 0, ..., 0, 1), form basis of Fn, called the
standard basis, since any vector (x1, x2, ..., xn) can be uniquely expressed as a linear combination of these vectors:

(x1, x2, ..., xn) = x1(1, 0, ..., 0) + x2(0, 1, 0, ..., 0) + ... + xn(0, ..., 0, 1) = x1e1 + x2e2 + ... + xnen.
Every vector space has a basis. This follows from Zorn's lemma, an equivalent formulation of the axiom of
choice.[21] Given the other axioms of Zermelo-Fraenkel set theory, the existence of bases is equivalent to the axiom
of choice.[22] The ultrafilter lemma, which is weaker than the axiom of choice, implies that all bases of a given
vector space have the same number of elements, or cardinality.[23] It is called the dimension of the vector space,
denoted dim V. If the space is spanned by finitely many vectors, the above statements can be proven without such
fundamental input from set theory.[24]

The dimension of the coordinate space Fn is n, by the basis exhibited above. The dimension of the polynomial ring 
F[x] introduced above is countably infinite, a basis is given by 1, x, x2, ... A fortiori, the dimension of more general 
function spaces, such as the space of functions on some (bounded or unbounded) interval, is infinite.[25] Under 
suitable regularity assumptions on the coefficients involved, the dimension of the solution space of a homogeneous
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ordinary differential equation equals the degree of the equation.[26] For example, the solution space above equation is
generated by e−x and xe−x. These two functions are linearly independent over R, so the dimension of this space is
two, as is the degree of the equation.
The dimension (or degree) of the field extension Q(α) over Q depends on α. If α satisfies some polynomial equation

qnαn + qn−1αn−1 + ... + q0 = 0, with rational coefficients qn, ..., q0.
("α is algebraic"), the dimension is finite. More precisely, it equals the degree of the minimal polynomial having α as
a root.[27] For example, the complex numbers C are a two-dimensional real vector space, generated by 1 and the
imaginary unit i. The latter satisfies i2 + 1 = 0, an equation of degree two. Thus, C is a two-dimensional R-vector
space (and, as any field, one-dimensional as a vector space over itself, C). If α is not algebraic, the dimension of
Q(α) over Q is infinite. For instance, for α = π there is no such equation, in other words π is transcendental.[28]

Linear maps and matrices
The relation of two vector spaces can be expressed by linear map or linear transformation. They are functions that
reflect the vector space structure—i.e., they preserve sums and scalar multiplication:

ƒ(x + y) = ƒ(x) + ƒ(y) and ƒ(a · x) = a · ƒ(x) for all x and y in V, all a in F.[29]

An isomorphism is a linear map ƒ : V → W such that there exists an inverse map g : W → V, which is a map such that
the two possible compositions ƒ ∘ g : W → W and g ∘ ƒ : V → V are identity maps. Equivalently, ƒ is both one-to-one
(injective) and onto (surjective).[30] If there exists an isomorphism between V and W, the two spaces are said to be
isomorphic; they are then essentially identical as vector spaces, since all identities holding in V are, via ƒ, transported
to similar ones in W, and vice versa via g.

Describing an arrow vector v by its coordinates x
and y yields an isomorphism of vector spaces.

For example, the vector spaces in the introduction are isomorphic: a
planar arrow v departing at the origin of some (fixed) coordinate
system can be expressed as an ordered pair by considering the x- and
y-component of the arrow, as shown in the image at the right.
Conversely, given a pair (x, y), the arrow going by x to the right (or to
the left, if x is negative), and y up (down, if y is negative) turns back
the arrow v.

Linear maps V → W between two fixed vector spaces form a vector
space HomF(V, W), also denoted L(V, W).[31] The space of linear maps
from V to F is called the dual vector space, denoted V∗.[32] Via the
injective natural map V → V∗∗, any vector space can be embedded into
its bidual; the map is an isomorphism if and only if the space is
finite-dimensional.[33]

Once a basis of V is chosen, linear maps ƒ : V → W are completely determined by specifying the images of the basis
vectors, because any element of V is expressed uniquely as a linear combination of them.[34] If dim V = dim W, a
1-to-1 correspondence between fixed bases of V and W gives rise to a linear map that maps any basis element of V to
the corresponding basis element of W. It is an isomorphism, by its very definition.[35] Therefore, two vector spaces
are isomorphic if their dimensions agree and vice versa. Another way to express this is that any vector space is
completely classified (up to isomorphism) by its dimension, a single number. In particular, any n-dimensional
F-vector space V is isomorphic to Fn. There is, however, no "canonical" or preferred isomorphism; actually an
isomorphism φ: Fn → V is equivalent to the choice of a basis of V, by mapping the standard basis of Fn to V, via φ.
Appending an automorphism, i.e. an isomorphism ψ: V → V yields another isomorphism ψ∘φ: Fn → V, the
composition of ψ and φ, and therefore a different basis of V. The freedom of choosing a convenient basis is
particularly useful in the infinite-dimensional context, see below.
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Matrices

A typical matrix

Matrices are a useful notion to encode linear maps.[36] They are
written as a rectangular array of scalars as in the image at the right.
Any m-by-n matrix A gives rise to a linear map from Fn to Fm, by
the following

, where denotes summation,

or, using the matrix multiplication of the matrix A with the coordinate vector x:
x ↦ Ax.

Moreover, after choosing bases of V and W, any linear map ƒ : V → W is uniquely represented by a matrix via this
assignment.[37]

The volume of this parallelepiped is the absolute value
of the determinant of the 3-by-3 matrix formed by the

vectors r1, r2, and r3.

The determinant det (A) of a square matrix A is a scalar that tells
whether the associated map is an isomorphism or not: to be so it is
sufficient and necessary that the determinant is nonzero.[38] The
linear transformation of Rn corresponding to a real n-by-n matrix
is orientation preserving if and only if the determinant is positive.

Eigenvalues and eigenvectors

Endomorphisms, linear maps ƒ : V → V, are particularly important
since in this case vectors v can be compared with their image
under ƒ, ƒ(v). Any nonzero vector v satisfying λv = ƒ(v), where λ is
a scalar, is called an eigenvector of ƒ with eigenvalue λ.[39] [40]

Equivalently, v is an element of the kernel of the difference ƒ − λ ·
Id (where Id is the identity map V → V). If V is finite-dimensional,
this can be rephrased using determinants: ƒ having eigenvalue λ is
equivalent to

det (ƒ − λ · Id) = 0.
By spelling out the definition of the determinant, the expression on the left hand side can be seen to be a polynomial
function in λ, called the characteristic polynomial of ƒ.[41] If the field F is large enough to contain a zero of this
polynomial (which automatically happens for F algebraically closed, such as F = C) any linear map has at least one
eigenvector. The vector space V may or may not possess an eigenbasis, a basis consisting of eigenvectors. This
phenomenon is governed by the Jordan canonical form of the map.[42] The set of all eigenvectors corresponding to a
particular eigenvalue of ƒ forms a vector space known as the eigenspace corresponding to the eigenvalue (and ƒ) in
question. To achieve the spectral theorem, the corresponding statement in the infinite-dimensional case, the
machinery of functional analysis is needed, see below.
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Basic constructions
In addition to the above concrete examples, there are a number of standard linear algebraic constructions that yield
vector spaces related to given ones. In addition to the definitions given below, they are also characterized by
universal properties, which determine an object X by specifying the linear maps from X to any other vector space.

Subspaces and quotient spaces

A line passing through the origin (blue, thick) in R3 is a linear
subspace. It is the intersection of two planes (green and yellow).

A nonempty subset W of a vector space V that is closed
under addition and scalar multiplication (and therefore
contains the 0-vector of V) is called a subspace of V.[43]

Subspaces of V are vector spaces (over the same field)
in their own right. The intersection of all subspaces
containing a given set S of vectors is called its span,
and is the smallest subspace of V containing the set S.
Expressed in terms of elements, the span is the
subspace consisting of all the linear combinations of
elements of S.[44]

The counterpart to subspaces are quotient vector
spaces.[45] Given any subspace W ⊂ V, the quotient
space V/W ("V modulo W") is defined as follows: as a
set, it consists of v + W = {v + w, w ∈ W}, where v is
an arbitrary vector in V. The sum of two such elements v1 + W and v2 + W is (v1 + v2) + W, and scalar multiplication
is given by a · (v + W) = (a · v) + W. The key point in this definition is that v1 + W = v2 + W if and only if the
difference of v1 and v2 lies in W.[46] This way, the quotient space "forgets" information that is contained in the
subspace W.

The kernel ker(ƒ) of a linear map ƒ: V → W consists of vectors v that are mapped to 0 in W.[47] Both kernel and image
im(ƒ) = {ƒ(v), v ∈ V} are subspaces of V and W, respectively.[48] The existence of kernels and images is part of the
statement that the category of vector spaces (over a fixed field F) is an abelian category, i.e. a corpus of
mathematical objects and structure-preserving maps between them (a category) that behaves much like the category
of abelian groups.[49] Because of this, many statements such as the first isomorphism theorem (also called
rank-nullity theorem in matrix-related terms)

V / ker(ƒ) ≅ im(ƒ).
and the second and third isomorphism theorem can be formulated and proven in a way very similar to the
corresponding statements for groups.
An important example is the kernel of a linear map x ↦ Ax for some fixed matrix A, as above. The kernel of this
map is the subspace of vectors x such that Ax = 0, which is precisely the set of solutions to the system of
homogeneous linear equations belonging to A. This concept also extends to linear differential equations

, where the coefficients ai are functions in x, too.

In the corresponding map

,

the derivatives of the function ƒ appear linearly (as opposed to ƒ''(x)2, for example). Since differentiation is a linear
procedure (i.e., (ƒ + g)' = ƒ' + g ' and (c·ƒ)' = c·ƒ' for a constant c) this assignment is linear, called a linear differential
operator. In particular, the solutions to the differential equation D(ƒ) = 0 form a vector space (over R or C).
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Direct product and direct sum

The direct product of a family of vector spaces Vi consists of the set of all tuples (vi)i ∈ I, which specify for
each index i in some index set I an element vi of Vi.

[50] Addition and scalar multiplication is performed
componentwise. A variant of this construction is the direct sum (also called coproduct and denoted

), where only tuples with finitely many nonzero vectors are allowed. If the index set I is finite, the two
constructions agree, but differ otherwise.

Tensor product
The tensor product V ⊗F W, or simply V ⊗ W, of two vector spaces V and W is one of the central notions of
multilinear algebra which deals with extending notions such as linear maps to several variables. A map g: V × W →
X is called bilinear if g is linear in both variables v and w. That is to say, for fixed w the map v ↦ g(v, w) is linear in
the sense above and likewise for fixed v.
The tensor product is a particular vector space that is a universal recipient of bilinear maps g, as follows. It is defined
as the vector space consisting of finite (formal) sums of symbols called tensors

v1 ⊗ w1 + v2 ⊗ w2 + ... + vn ⊗ wn,
subject to the rules

a · (v ⊗ w) = (a · v) ⊗ w = v ⊗ (a · w), where a is a scalar,
(v1 + v2) ⊗ w = v1 ⊗ w + v2 ⊗ w, and
v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2.[51]

Commutative diagram depicting the universal property
of the tensor product.

These rules ensure that the map ƒ from the V × W to V ⊗ W that
maps a tuple (v, w) to v ⊗ w is bilinear. The universality states
that given any vector space X and any bilinear map g: V × W → X,
there exists a unique map u, shown in the diagram with a dotted
arrow, whose composition with ƒ equals g: u(v ⊗ w) = g(v, w).[52]

This is called the universal property of the tensor product, an
instance of the method—much used in advanced abstract
algebra—to indirectly define objects by specifying maps from or
to this object.

Vector spaces with additional structure
From the point of view of linear algebra, vector spaces are completely understood insofar as any vector space is
characterized, up to isomorphism, by its dimension. However, vector spaces ad hoc do not offer a framework to deal
with the question—crucial to analysis—whether a sequence of functions converges to another function. Likewise,
linear algebra is not adapted to deal with infinite series, since the addition operation allows only finitely many terms
to be added. Therefore, the needs of functional analysis require considering additional structures. Much the same
way the axiomatic treatment of vector spaces reveals their essential algebraic features, studying vector spaces with
additional data abstractly turns out to be advantageous, too.
A first example of an additional datum is an order ≤, a token by which vectors can be compared.[53] For example,
n-dimensional real space Rn can be ordered by comparing its vectors componentwise. Ordered vector spaces, for
example Riesz spaces, are fundamental to Lebesgue integration, which relies on the ability to express a function as a
difference of two positive functions

ƒ = ƒ+ − ƒ−,
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where ƒ+ denotes the positive part of ƒ and ƒ− the negative part.[54]

Normed vector spaces and inner product spaces
"Measuring" vectors is done by specifying a norm, a datum which measures lengths of vectors, or by an inner
product, which measures angles between vectors. Norms and inner products are denoted and ,
respectively. The datum of an inner product entails that lengths of vectors can be defined too, by defining the
associated norm . Vector spaces endowed with such data are known as normed vector spaces and
inner product spaces, respectively.[55]

Coordinate space Fn can be equipped with the standard dot product:

In R2, this reflects the common notion of the angle between two vectors x and y, by the law of cosines:

Because of this, two vectors satisfying are called orthogonal. An important variant of the standard dot
product is used in Minkowski space: R4 endowed with the Lorentz product

[56]

In contrast to the standard dot product, it is not positive definite: also takes negative values, for example for
x = (0, 0, 0, 1). Singling out the fourth coordinate—corresponding to time, as opposed to three
space-dimensions—makes it useful for the mathematical treatment of special relativity.

Topological vector spaces
Convergence questions are treated by considering vector spaces V carrying a compatible topology, a structure that
allows one to talk about elements being close to each other.[57] [58] Compatible here means that addition and scalar
multiplication have to be continuous maps. Roughly, if x and y in V, and a in F vary by a bounded amount, then so
do x + y and ax.[59] To make sense of specifying the amount a scalar changes, the field F also has to carry a topology
in this context; a common choice are the reals or the complex numbers.
In such topological vector spaces one can consider series of vectors. The infinite sum

denotes the limit of the corresponding finite partial sums of the sequence (ƒi)i∈N 
of elements of V. For example, the ƒi

could be (real or complex) functions belonging to some function space V, in which case the series is a function
series. The mode of convergence of the series depends on the topology imposed on the function space. In such cases,
pointwise convergence and uniform convergence are two prominent examples.
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Unit "spheres" in R2 consist of plane vectors of norm 1. Depicted are
the unit spheres in different p-norms, for p = 1, 2, and ∞. The bigger

diamond depicts points of 1-norm equal to .

A way to ensure the existence of limits of certain
infinite series is to restrict attention to spaces where
any Cauchy sequence has a limit; such a vector space is
called complete. Roughly, a vector space is complete
provided that it contains all necessary limits. For
example, the vector space of polynomials on the unit
interval [0,1], equipped with the topology of uniform
convergence is not complete because any continuous
function on [0,1] can be uniformly approximated by a
sequence of polynomials, by the Weierstrass
approximation theorem.[60] In contrast, the space of all
continuous functions on [0,1] with the same topology is
complete.[61] A norm gives rise to a topology by
defining that a sequence of vectors vn converges to v if
and only if

Banach and Hilbert spaces are complete topological spaces whose topologies are given, respectively, by a norm and
an inner product. Their study—a key piece of functional analysis—focusses on infinite-dimensional vector spaces,
since all norms on finite-dimensional topological vector spaces give rise to the same notion of convergence.[62] The
image at the right shows the equivalence of the 1-norm and ∞-norm on R2: as the unit "balls" enclose each other, a
sequence converges to zero in one norm if and only if it so does in the other norm. In the infinite-dimensional case,
however, there will generally be inequivalent topologies, which makes the study of topological vector spaces richer
than that of vector spaces without additional data.
From a conceptual point of view, all notions related to topological vector spaces should match the topology. For
example, instead of considering all linear maps (also called functionals) V → W, maps between topological vector
spaces are required to be continuous.[63] In particular, the (topological) dual space V∗ consists of continuous
functionals V → R (or C). The fundamental Hahn-Banach theorem is concerned with separating subspaces of
appropriate topological vector spaces by continuous functionals.[64]

Banach spaces

Banach spaces, introduced by Stefan Banach, are complete normed vector spaces.[65] A first example is the vector
space ℓ p consisting of infinite vectors with real entries x = (x1, x2, ...) whose p-norm (1 ≤ p ≤ ∞) given by

for p < ∞ and 

is finite. The topologies on the infinite-dimensional space ℓ p are inequivalent for different p. E.g. the sequence of
vectors xn = (2−n, 2−n, ..., 2−n, 0, 0, ...), i.e. the first 2n components are 2−n, the following ones are 0, converges to the
zero vector for p = ∞, but does not for p = 1:

, but 
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More generally than sequences of real numbers, functions ƒ: Ω → R are endowed with a norm that replaces the above
sum by the Lebesgue integral

The space of integrable functions on a given domain Ω (for example an interval) satisfying |ƒ|p < ∞, and equipped
with this norm are called Lebesgue spaces, denoted Lp(Ω).[66] These spaces are complete.[67] (If one uses the
Riemann integral instead, the space is not complete, which may be seen as a justification for Lebesgue's integration
theory.[68] ) Concretely this means that for any sequence of Lebesgue-integrable functions ƒ1, ƒ2, ... with |ƒn|p < ∞,
satisfying the condition

there exists a function ƒ(x) belonging to the vector space Lp(Ω) such that

Imposing boundedness conditions not only on the function, but also on its derivatives leads to Sobolev spaces.[69]

Hilbert spaces

The succeeding snapshots show summation of 1 to 5 terms in approximating a periodic
function (blue) by finite sum of sine functions (red).

Complete inner product spaces are
known as Hilbert spaces, in honor of
David Hilbert.[70] The Hilbert space
L2(Ω), with inner product given by

where denotes the complex conjugate of g(x).[71] [72] is a key case.
By definition, in a Hilbert space any Cauchy sequences converges to a limit. Conversely, finding a sequence of
functions ƒn with desirable properties that approximates a given limit function, is equally crucial. Early analysis, in
the guise of the Taylor approximation, established an approximation of differentiable functions ƒ by polynomials.[73]

By the Stone–Weierstrass theorem, every continuous function on [a, b] can be approximated as closely as desired by
a polynomial.[74] A similar approximation technique by trigonometric functions is commonly called Fourier
expansion, and is much applied in engineering, see below. More generally, and more conceptually, the theorem
yields a simple description of what "basic functions", or, in abstract Hilbert spaces, what basic vectors suffice to
generate a Hilbert space H, in the sense that the closure of their span (i.e., finite linear combinations and limits of
those) is the whole space. Such a set of functions is called a basis of H, its cardinality is known as the Hilbert
dimension.[75] Not only does the theorem exhibit suitable basis functions as sufficient for approximation purposes,
together with the Gram-Schmidt process it also allows to construct a basis of orthogonal vectors.[76] Such orthogonal
bases are the Hilbert space generalization of the coordinate axes in finite-dimensional Euclidean space.
The solutions to various differential equations can be interpreted in terms of Hilbert spaces. For example, a great 
many fields in physics and engineering lead to such equations and frequently solutions with particular physical 
properties are used as basis functions, often orthogonal.[77] As an example from physics, the time-dependent 
Schrödinger equation in quantum mechanics describes the change of physical properties in time, by means of a 
partial differential equation whose solutions are called wavefunctions.[78] Definite values for physical properties
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such as energy, or momentum, correspond to eigenvalues of a certain (linear) differential operator and the associated
wavefunctions are called eigenstates. The spectral theorem decomposes a linear compact operator acting on
functions in terms of these eigenfunctions and their eigenvalues.[79]

Algebras over fields

A hyperbola, given by the equation x · y = 1. The coordinate ring of
functions on this hyperbola is given by R[x, y] / (x · y − 1), an

infinite-dimensional vector space over R.

General vector spaces do not possess a multiplication
operation. A vector space equipped with an additional
bilinear operator defining the multiplication of two
vectors is an algebra over a field.[80] Many algebras
stem from functions on some geometrical object: since
functions with values in a field can be multiplied, these
entities form algebras. The Stone–Weierstrass theorem
mentioned above, for example, relies on Banach
algebras which are both Banach spaces and algebras.

Commutative algebra makes great use of rings of
polynomials in one or several variables, introduced
above. Their multiplication is both commutative and
associative. These rings and their quotients form the
basis of algebraic geometry, because they are rings of
functions of algebraic geometric objects.[81]

Another crucial example are Lie algebras, which are
neither commutative nor associative, but the failure to
be so is limited by the constraints ([x, y] denotes the
product of x and y):

• [x, y] = −[y, x] (anticommutativity) and
• [x, [y, z]] + [y, [x, z]] + [z, [x, y]] = 0 (Jacobi identity).[82]

Examples include the vector space of n-by-n matrices, with [x, y] = xy − yx, the commutator of two matrices, and R3,
endowed with the cross product.

The tensor algebra T(V) is a formal way of adding products to any vector space V to obtain an algebra.[83] As a
vector space, it is spanned by symbols, called simple tensors

v1 ⊗ v2 ⊗ ... ⊗ vn, where the degree n varies.
The multiplication is given by concatenating such symbols, imposing the distributive law under addition, and
requiring that scalar multiplication commute with the tensor product ⊗, much the same way as with the tensor
product of two vector spaces introduced above. In general, there are no relations between v1 ⊗ v2 and v2 ⊗ v1.
Forcing two such elements to be equal leads to the symmetric algebra, whereas forcing v1 ⊗ v2 = − v2 ⊗ v1 yields
the exterior algebra.[84]

Applications
Vector spaces have manifold applications as they occur in many circumstances, namely wherever functions with
values in some field are involved. They provide a framework to deal with analytical and geometrical problems, or
are used in the Fourier transform. This list is not exhaustive: many more applications exist, for example in
optimization. The minimax theorem of game theory stating the existence of a unique payoff when all players play
optimally can be formulated and proven using vector spaces methods.[85] Representation theory fruitfully transfers
the good understanding of linear algebra and vector spaces to other mathematical domains such as group theory.[86]
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Distributions
A distribution (or generalized function) is a linear map assigning a number to each "test" function, typically a
smooth function with compact support, in a continuous way: in the above terminology the space of distributions is
the (continuous) dual of the test function space.[87] The latter space is endowed with a topology that takes into
account not only ƒ itself, but also all its higher derivatives. A standard example is the result of integrating a test
function ƒ over some domain Ω:

When Ω = {p}, the set consisting of a single point, this reduces to the Dirac distribution, denoted by δ, which
associates to a test function ƒ its value at the p: δ(ƒ) = ƒ(p). Distributions are a powerful instrument to solve
differential equations. Since all standard analytic notions such as derivatives are linear, they extend naturally to the
space of distributions. Therefore the equation in question can be transferred to a distribution space, which is bigger
than the underlying function space, so that more flexible methods are available for solving the equation. For
example, Green's functions and fundamental solutions are usually distributions rather than proper functions, and can
then be used to find solutions of the equation with prescribed boundary conditions. The found solution can then in
some cases be proven to be actually a true function, and a solution to the original equation (e.g., using the
Lax-Milgram theorem, a consequence of the Riesz representation theorem).[88]

Fourier analysis

The heat equation describes the dissipation of physical
properties over time, such as the decline of the
temperature of a hot body placed in a colder

environment (yellow depicts hotter regions than red).

Resolving a periodic function into a sum of trigonometric
functions forms a Fourier series, a technique much used in physics
and engineering.[89] [90] The underlying vector space is usually the
Hilbert space L2(0, 2π), for which the functions sin mx and cos mx
(m an integer) form an orthogonal basis.[91] The Fourier expansion
of an L2 function f is

The coefficients am and bm are called Fourier coefficients of ƒ, and are calculated by the formulas[92]

, 

In physical terms the function is represented as a superposition of sine waves and the coefficients give information
about the function's frequency spectrum.[93] A complex-number form of Fourier series is also commonly used.[94]

The concrete formulae above are consequences of a more general mathematical duality called Pontryagin duality.[95]

Applied to the group R, it yields the classical Fourier transform; an application in physics are reciprocal lattices,
where the underlying group is a finite-dimensional real vector space endowed with the additional datum of a lattice
encoding positions of atoms in crystals.[96]

Fourier series are used to solve boundary value problems in partial differential equations.[97] In 1822, Fourier first 
used this technique to solve the heat equation.[98] A discrete version of the Fourier series can be used in sampling
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applications where the function value is known only at a finite number of equally spaced points. In this case the
Fourier series is finite and its value is equal to the sampled values at all points.[99] The set of coefficients is known as
the discrete Fourier transform (DFT) of the given sample sequence. The DFT is one of the key tools of digital signal
processing, a field whose applications include radar, speech encoding, image compression.[100] The JPEG image
format is an application of the closely-related discrete cosine transform.[101]

The fast Fourier transform is an algorithm for rapidly computing the discrete Fourier transform.[102] It is used not
only for calculating the Fourier coefficients but, using the convolution theorem, also for computing the convolution
of two finite sequences.[103] They in turn are applied in digital filters[104] and as a rapid multiplication algorithm for
polynomials and large integers (Schönhage-Strassen algorithm).[105] [106]

Differential geometry

The tangent space to the 2-sphere at some point is the
infinite plane touching the sphere in this point.

The tangent plane to a surface at a point is naturally a vector space
whose origin is identified with the point of contact. The tangent
plane is the best linear approximation, or linearization, of a surface
at a point.[107] Even in a three-dimensional Euclidean space, there
is typically no natural way to prescribe a basis of the tangent
plane, and so it is conceived of as an abstract vector space rather
than a real coordinate space. The tangent space is the
generalization to higher-dimensional differentiable manifolds.[108]

Riemannian manifolds are manifolds whose tangent spaces are
endowed with a suitable inner product.[109] Derived therefrom, the
Riemann curvature tensor encodes all curvatures of a manifold in
one object, which finds applications in general relativity, for example, where the Einstein curvature tensor describes
the matter and energy content of space-time.[110] [111] The tangent space of a Lie group can be given naturally the
structure of a Lie algebra and can be used to classify compact Lie groups.[112]

Generalizations

Vector bundles

http://en.wikipedia.org/w/index.php?title=Discrete_Fourier_transform
http://en.wikipedia.org/w/index.php?title=Digital_signal_processing
http://en.wikipedia.org/w/index.php?title=Digital_signal_processing
http://en.wikipedia.org/w/index.php?title=Radar
http://en.wikipedia.org/w/index.php?title=Speech_encoding
http://en.wikipedia.org/w/index.php?title=Image_compression
http://en.wikipedia.org/w/index.php?title=JPEG
http://en.wikipedia.org/w/index.php?title=Discrete_cosine_transform
http://en.wikipedia.org/w/index.php?title=Fast_Fourier_transform
http://en.wikipedia.org/w/index.php?title=Convolution_theorem
http://en.wikipedia.org/w/index.php?title=Convolution
http://en.wikipedia.org/w/index.php?title=Digital_filter
http://en.wikipedia.org/w/index.php?title=Multiplication_algorithm
http://en.wikipedia.org/w/index.php?title=Sch%C3%B6nhage-Strassen_algorithm
http://en.wikipedia.org/w/index.php?title=2-sphere
http://en.wikipedia.org/w/index.php?title=File:Tangent-plane.svg
http://en.wikipedia.org/w/index.php?title=Tangent_plane
http://en.wikipedia.org/w/index.php?title=Linear_approximation
http://en.wikipedia.org/w/index.php?title=Linearization
http://en.wikipedia.org/w/index.php?title=Differentiable_manifold
http://en.wikipedia.org/w/index.php?title=Riemannian_manifold
http://en.wikipedia.org/w/index.php?title=Riemannian_metric
http://en.wikipedia.org/w/index.php?title=Riemann_curvature_tensor
http://en.wikipedia.org/w/index.php?title=Curvature_%28mathematics%29
http://en.wikipedia.org/w/index.php?title=General_relativity
http://en.wikipedia.org/w/index.php?title=Einstein_curvature_tensor
http://en.wikipedia.org/w/index.php?title=Space-time
http://en.wikipedia.org/w/index.php?title=Compact_Lie_group


Vector space 84

A Möbius strip. Locally, it looks like U × R.

A vector bundle is a family of vector spaces
parametrized continuously by a topological space
X.[113] More precisely, a vector bundle over X is a
topological space E equipped with a continuous map

π : E → X
such that for every x in X, the fiber π−1(x) is a vector
space. The case dim V = 1 is called a line bundle. For
any vector space V, the projection X × V → X makes the
product X × V into a "trivial" vector bundle. Vector
bundles over X are required to be locally a product of X
and some (fixed) vector space V: for every x in X, there
is a neighborhood U of x such that the restriction of π to
π−1(U) is isomorphic[114] to the trivial bundle U × V →
U. Despite their locally trivial character, vector bundles
may (depending on the shape of the underlying space
X) be "twisted" in the large, i.e., the bundle need not be
(globally isomorphic to) the trivial bundle X × V. For example, the Möbius strip can be seen as a line bundle over the
circle S1 (by identifying open intervals with the real line). It is, however, different from the cylinder S1 × R, because
the latter is orientable whereas the former is not.[115]

Properties of certain vector bundles provide information about the underlying topological space. For example, the
tangent bundle consists of the collection of tangent spaces parametrized by the points of a differentiable manifold.
The tangent bundle of the circle S1 is globally isomorphic to S1 × R, since there is a global nonzero vector field on
S1.[116] In contrast, by the hairy ball theorem, there is no (tangent) vector field on the 2-sphere S2 which is
everywhere nonzero.[117] K-theory studies the isomorphism classes of all vector bundles over some topological
space.[118] In addition to deepening topological and geometrical insight, it has purely algebraic consequences, such
as the classification of finite-dimensional real division algebras: R, C, the quaternions H and the octonions.
The cotangent bundle of a differentiable manifold consists, at every point of the manifold, of the dual of the tangent
space, the cotangent space. Sections of that bundle are known as differential forms. They are used to do integration
on manifolds.

Modules
Modules are to rings what vector spaces are to fields. The very same axioms, applied to a ring R instead of a field F
yield modules.[119] The theory of modules, compared to vector spaces, is complicated by the presence of ring
elements that do not have multiplicative inverses. For example, modules need not have bases, as the Z-module (i.e.,
abelian group) Z/2Z shows; those modules that do (including all vector spaces) are known as free modules.
Nevertheless, a vector space can be compactly defined as a module over a ring which is a field with the elements
being called vectors. The algebro-geometric interpretation of commutative rings via their spectrum allows the
development of concepts such as locally free modules, the algebraic counterpart to vector bundles.
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Affine and projective spaces

An affine plane (light blue) in R3. It is a
two-dimensional subspace shifted by a vector x (red).

Roughly, affine spaces are vector spaces whose origin is not
specified.[120] More precisely, an affine space is a set with a free
transitive vector space action. In particular, a vector space is an
affine space over itself, by the map

V × V → V, (v, a) ↦ a + v.
If W is a vector space, then an affine subspace is a subset of W
obtained by translating a linear subspace V by a fixed vector x ∈
W; this space is denoted by x + V (it is a coset of V in W) and
consists of all vectors of the form x + v for v ∈ V. An important
example is the space of solutions of a system of inhomogeneous
linear equations

Ax = b
generalizing the homogeneous case b = 0 above.[121] The space of solutions is the affine subspace x + V where x is a
particular solution of the equation, and V is the space of solutions of the homogeneous equation (the nullspace of A).

The set of one-dimensional subspaces of a fixed finite-dimensional vector space V is known as projective space; it
may be used to formalize the idea of parallel lines intersecting at infinity.[122] Grassmannians and flag manifolds
generalize this by parametrizing linear subspaces of fixed dimension k and flags of subspaces, respectively.

See also

• Coordinates (mathematics)
• Euclidean vector, for vectors in physics
• Gyrovector space

• Graded vector space
• Metric space
• P-vector

• Riesz–Fischer theorem
• Vector spaces without fields
• Space (mathematics)
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Groupoids and Double Groupoids

Groupoid
In mathematics, especially in category theory and homotopy theory, a groupoid (less often Brandt groupoid or
virtual group) generalises the notion of group and of category in several equivalent ways. A groupoid can be seen
as a:
• Group with a partial function replacing the binary operation;
• Category in which every morphism is an isomorphism. A category of this sort can be viewed as augmented with a

unary operation, called inverse by analogy with group theory.
Special cases include:
• Setoids, that is: sets which come with an equivalence relation;
• G-sets, sets equipped with an action of a group G.
Groupoids are often used to reason about geometrical objects such as manifolds. Heinrich Brandt introduced
groupoids implicitly via Brandt semigroups in 1926.[1]

Definitions

Algebraic

A groupoid is a set G with a unary operation and a partial function * is not a
binary operation because it is not necessarily defined for all possible pairs of G-elements. The precise conditions
under which * is defined are not articulated here and vary by situation.

and -1 have the following axiomatic properties. Let a, b, and c be elements of G. Then:
• Associativity: If a * b and b * c are defined, then (a * b) * c and a * (b * c) are defined and equal. Conversely, if

either of these last two expressions is defined, then so is the other (and again they are equal).
• Inverse: a-1 * a and a * a-1 are always defined.
• Identity: If a * b is defined, then a * b * b-1 = a, and a-1 * a * b = b. (The previous two axioms already show that

these expressions are defined and unambiguous.)
In short:
• (a * b) * c = a * (b * c);
• (a * b) * b-1 = a;
• a-1 * (a * b) = b.
From these axioms, two easy and convenient theorems follow:
• (a-1)-1 = a;
• If a * b is defined, then (a * b)-1 = b-1 * a-1.
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Category theoretic
A groupoid is a small category in which every morphism is an isomorphism, and hence invertible. More precisely, a
groupoid G is:
• A set G0 of objects;
• For each pair of objects x and y in G0, there exists a (possibly empty) set G(x,y) of morphisms (or arrows) from x

to y. We write f : x → y to indicate that f is an element of G(x,y).
The objects and morphisms have the properties:
• For every object x, there exists the element of G(x,x);
• For each triple of objects x, y, and z, there exists the function  G(x,y) G(y,z) → G(x,z). We write

gf for , where f G(x,y), and g G(y,z);
• There exists the function  G(x,y) → G(y,x).
Moreover, if f : x → y, g : y → z, and h : z → w, then:

• and ;
• (hg)f = h(gf);
• and .
If f is an element of G(x,y) then x is called the source of f, written s(f), and y the target of f (written t(f)).

Comparing the definitions
The algebraic and category-theoretic definitions are equivalent, as follows. Given a groupoid in the
category-theoretic sense, let G be the disjoint union of all of the sets G(x,y) (i.e. the sets of morphisms from x to y).
Then and become partially defined operations on G, and will in fact be defined everywhere; so we
define * to be and to be . Thus we have a groupoid in the algebraic sense. Explicit reference to G0
(and hence to ) can be dropped.
Conversely, given a groupoid G in the algebraic sense, with typical element f, let G0 be the set of all elements of the
form f*f-1. In other words, the objects are identified with the identity morphisms, so that is just x. Let G(x,y) be
the set of all elements f such that y f x is defined. Then -1 and * break up into several functions on the various G(x,y),
which may be called and , respectively.
Sets in the definitions above may be replaced with classes, as is generally the case in category theory.

Vertex groups
Given a groupoid G, the vertex groups or isotropy group in G are the subsets of the form G(x,x), where x is any
object of G. It follows easily from the axioms above that these are indeed groups, as every pair of elements is
composable and inverses are in the same vertex group.

Groupoid Category
The category whose objects are groupoids and whose morphisms are groupoid homomorphisms is called the
groupoid category, or the category of groupoids.
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Examples

Linear algebra
Given a field K, the corresponding general linear groupoid GL*(K) consists of all invertible matrices whose entries
range over K. Matrix multiplication interprets composition. If G = GL*(K), then the set of natural numbers is a proper
subset of G0, since for each natural number n, there is a corresponding identity matrix of dimension n. G(m,n) is
empty unless m=n, in which case it is the set of all nxn invertible matrices.

Topology
Given a topological space X, let G0 be the set X. The morphisms from the point p to the point q are equivalence
classes of continuous paths from p to q, with two paths being equivalent if they are homotopic. Two such morphisms
are composed by first following the first path, then the second; the homotopy equivalence guarantees that this
composition is associative. This groupoid is called the fundamental groupoid of X, denoted (X). The usual
fundamental group is then the vertex group for the point x.
An important extension of this idea is to consider the fundamental groupoid (X,A) where A is a set of "base
points" and a subset of X. Here, one considers only paths whose endpoints belong to A. (X,A) is a sub-groupoid
of (X). The set A may be chosen according to the geometry of the situation at hand.

Equivalence relation
If X is a set with an equivalence relation denoted by infix , then a groupoid "representing" this equivalence
relation can be formed as follows:
• The objects of the groupoid are the elements of X;
• For any two elements x and y in X, there is a single morphism from x to y if and only if x~y.

Group action
If the group G acts on the set X, then we can form the action groupoid representing this group action as follows:
• The objects are the elements of X;
• For any two elements x and y in X, there is a morphism from x to y corresponding to every element g of G such

that gx = y;
• Composition of morphisms interprets the binary operation of G.
More explicitly, the action groupoid is the set with source and target maps s(g,x) = x and t(g,x) = gx. It is
often denoted (or ). Multiplication (or composition) in the groupoid is then

which is defined provided y=gx.
For x in X, the vertex group consists of those (g,x) with gx = x, which is just the isotropy subgroup at x for the given
action (which is why vertex groups are also called isotropy groups).

Another way to describe G-sets is the functor category , where is the groupoid (category) with one
element and isomorphic to the group G. Indeed, every functor F of this category defines a set X=F and for
every g in G (i.e. for every morphism in ) induces a bijection Fg : X→X. The categorical structure of the functor
F assures us that F defines a G-action on the set X. The (unique) representable functor F : → is the Cayley
representation of G. In fact, this functor is isomorphic to and so sends to the set

which is by definition the "set" G and the morphism g of (i.e. the element g of G) to the
permutation Fg of the set G. We deduce from the Yoneda embedding that the group G is isomorphic to the group {Fg
| g∈G}, a subgroup of the group of permutations of G.
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Fifteen puzzle
The symmetries of the Fifteen puzzle form a groupoid (not a group, as not all moves can be composed). This
groupoid acts on configurations.

Relation to groups

Group-like structures

Totality Associativity Identity Inverses

Group Yes Yes Yes Yes

Monoid Yes Yes Yes No

Semigroup Yes Yes No No

Loop Yes No Yes Yes

Quasigroup Yes No No Yes

Magma Yes No No No

Groupoid No Yes Yes Yes

Category No Yes Yes No

If a groupoid has only one object, then the set of its morphisms forms a group. Using the algebraic definition, such a
groupoid is literally just a group. Many concepts of group theory generalize to groupoids, with the notion of functor
replacing that of group homomorphism.
If x is an object of the groupoid G, then the set of all morphisms from x to x forms a group G(x). If there is a
morphism f from x to y, then the groups G(x) and G(y) are isomorphic, with an isomorphism given by the mapping g
→ fgf −1.
Every connected groupoid (that is, one in which any two objects are connected by at least one morphism) is
isomorphic to a groupoid of the following form. Pick a group G and a set (or class) X. Let the objects of the groupoid
be the elements of X. For elements x and y of X, let the set of morphisms from x to y be G. Composition of
morphisms is the group operation of G. If the groupoid is not connected, then it is isomorphic to a disjoint union of
groupoids of the above type (possibly with different groups G for each connected component). Thus any groupoid
may be given (up to isomorphism) by a set of ordered pairs (X,G).
Note that the isomorphism described above is not unique, and there is no natural choice. Choosing such an
isomorphism for a connected groupoid essentially amounts to picking one object x0, a group isomorphism h from
G(x0) to G, and for each x other than x0, a morphism in G from x0 to x.
In category-theoretic terms, each connected component of a groupoid is equivalent (but not isomorphic) to a
groupoid with a single object, that is, a single group. Thus any groupoid is equivalent to a multiset of unrelated
groups. In other words, for equivalence instead of isomorphism, one need not specify the sets X, only the groups G.
Consider the examples in the previous section. The general linear groupoid is both equivalent and isomorphic to the
disjoint union of the various general linear groups GLn(F). On the other hand:
• The fundamental groupoid of X is equivalent to the collection of the fundamental groups of each path-connected

component of X, but an isomorphism requires specifying the set of points in each component;
• The set X with the equivalence relation is equivalent (as a groupoid) to one copy of the trivial group for each

equivalence class, but an isomorphism requires specifying what each equivalence class is:
• The set X equipped with an action of the group G is equivalent (as a groupoid) to one copy of G for each orbit of

the action, but an isomorphism requires specifying what set each orbit is.
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The collapse of a groupoid into a mere collection of groups loses some information, even from a category-theoretic
point of view, because it is not natural. Thus when groupoids arise in terms of other structures, as in the above
examples, it can be helpful to maintain the full groupoid. Otherwise, one must choose a way to view each G(x) in
terms of a single group, and this choice can be arbitrary. In our example from topology, you would have to make a
coherent choice of paths (or equivalence classes of paths) from each point p to each point q in the same
path-connected component.
As a more illuminating example, the classification of groupoids with one endomorphism does not reduce to purely
group theoretic considerations. This is analogous to the fact that the classification of vector spaces with one
endomorphism is nontrivial.
Morphisms of groupoids come in more kinds than those of groups: we have, for example, fibrations, covering
morphisms, universal morphisms, and quotient morphisms. Thus a subgroup H of a group G yields an action of G on
the set of cosets of H in G and hence a covering morphism p from, say, K to G, where K is a groupoid with vertex
groups isomorphic to H. In this way, presentations of the group G can be "lifted" to presentations of the groupoid K,
and this is a useful way of obtaining information about presentations of the subgroup H. For further information, see
the books by Higgins and by Brown in the References.
Another useful fact is that the category of groupoids, unlike that of groups, is cartesian closed.

Lie groupoids and Lie algebroids
When studying geometrical objects, the arising groupoids often carry some differentiable structure, turning them into
Lie groupoids. These can be studied in terms of Lie algebroids, in analogy to the relation between Lie groups and Lie
algebras.
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2- groupoid
In mathematics, a 2-group, or 2-dimensional higher group, is a certain combination of group and groupoid. The
2-groups are part of a larger hierarchy of n-groups. In some of the literature, 2-groups are also called gr-categories
or groupal groupoids.

Definition
A 2-group is a monoidal category G in which every morphism is invertible and every object has a weak inverse.
(Here, a weak inverse of an object x is an object y such that xy and yx are both isomorphic to the unit object.)

Strict 2-groups
Much of the literature focuses on strict 2-groups. A strict 2-group is a strict monoidal category in which every
morphism is invertible and every object has a strict inverse (so that xy and yx are actually equal to the unit object).
A strict 2-group is a group object in a category of categories; as such, they are also called groupal categories.
Conversely, a strict 2-group is a category object in the category of groups; as such, they are also called categorical
groups. They can also be identified with crossed modules, and are most often studied in that form. Thus, 2-groups in
general can be seen as a weakening of crossed modules.
Every 2-group is equivalent to a strict 2-group, although this can't be done coherently: it doesn't extend to 2-group
homomorphisms.

Properties
Weak inverses can always be assigned coherently: one can define a functor on any 2-group G that assigns a weak
inverse to each object and makes that object an adjoint equivalance in the monoidal category G.
Given a bicategory B and an object x of B, there is an automorphism 2-group of x in B, written AutB(x). The objects
are the automorphisms of x, with multiplication given by composition, and the morphisms are the invertible
2-morphisms between these. If B is a 2-groupoid (so all objects and morphisms are weakly invertible) and x is its
only object, then AutB(x) is the only data left in B. Thus, 2-groups may be identified with one-object 2-groupoids,
much as groups may be idenitified with one-object groupoids and monoidal categories may be identified with
one-object bicategories.
If G is a strict 2-group, then the objects of G form a group, called the underlying group of G and written G0. This
will not work for arbitrary 2-groups; however, if one identifies isomorphic objects, then the equivalence classes form
a group, called the fundamental group of G and written π1(G). (Note that even for a strict 2-group, the fundamental
group will only be a quotient group of the underlying group.)
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As a monoidal category, any 2-group G has a unit object IG. The automorphism group of IG is an abelian group by
the Eckmann–Hilton argument, written Aut(IG) or π2(G).
The fundamental group of G acts on either side of π2(G), and the associator of G (as a monoidal category) defines an
element of the cohomology group H3(π1(G),π2(G)). In fact, 2-groups are classified in this way: given a group π1, an
abelian group π2, a group action of π1 on π2, and an element of H3(π1,π2), there is a unique (up to equivalence)
2-group G with π1(G) isomorphic to π1, π2(G) isomorphic to π2, and the other data corresponding.

The fundamental 2-group
Given a topological space X and a point x in that space, there is a fundamental 2-group of X at x, written Π2(X,x). As
a monoidal category, the objects are loops at x, with multiplication given by concatenation, and the morphisms are
basepoint-preserving homotopies between loops, with these morphisms identified if they are themselves homotopic.
Conversely, given any 2-group G, one can find a unique (up to weak homotopy equivalence) pointed connected
space whose fundamental 2-group is G and whose homotopy groups πn are trivial for n > 2. In this way, 2-groups
classify pointed connected weak homotopy 2-types. This is a generalisation of the construction of Eilenberg–Mac
Lane spaces.
If X is a topological space with basepoint x, then the fundamental group of X at x is the same as the fundamental
group of the fundamental 2-group of X at x; that is,

This fact is the origin of the term "fundamental" in both of its 2-group instances.
Similarly,

Thus, both the first and second homotopy groups of a space are contained within its fundamental 2-group. As this
2-group also defines an action of π1(X,x) on π2(X,x) and an element of the cohomology group H3(π1(X,x),π2(X,x)),
this is precisely the data needed to form the Postnikov tower of X if X is a pointed connected homotopy 2-type.
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Double groupoid
In mathematics, especially in higher dimensional algebra and homotopy theory, a double groupoid generalises the
notion of groupoid and of category to a higher dimension.

Definition
A double groupoid D is a higher dimensional groupoid involving a relationship for both `horizontal' and `vertical'
groupoid structures[1] . (A double groupoid can also be considered as a generalization of certain higher dimensional
groups[2] .) The geometry of squares and their compositions leads to a common representation of a double groupoid
in the following diagram:

where M is a set of `points', H and V are, respectively, `horizontal' and `vertical' groupoids, and S is a set of `squares'
with two compositions. The composition laws for a double groupoid D make it also describable as a groupoid
internal to the category of groupoids.

Given two groupoids H, V over a set M, there is a double groupoid  with H,V as horizontal and
vertical edge groupoids, and squares given by quadruples

for which we assume always that h, h' are in H, v, v' are in V, and that the initial and final points of these edges
match in M as suggested by the notation, that is for example sh = sv, th = sv',..., etc. The compositions are to be
inherited from those of H,V, that is:
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This construction is the right adjoint to the forgetful functor which takes the double groupoid as above, to the pair of
groupoids H,V over M.
Other related constructions are that of a double groupoid with connection [3] and homotopy double groupoids [4] .

Convolution algebra
A convolution C*-algebra of a double groupoid can also be constructed by employing the square diagram D of a
double groupoid [5] .

Double Groupoid Category
The category whose objects are double groupoids and whose morphisms are double groupoid homomorphisms that
are double groupoid diagram (D) functors is called the double groupoid category, or the category of double
groupoids.
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Algebraic Topology

Crossed module
In mathematics, and especially in homotopy theory, a crossed module consists of groups G and H, where G acts on
H (which we will write on the left), and a homomorphism of groups

that is equivariant with respect to the conjugation action of G on itself:

and also satisfies the so-called Peiffer identity:

Examples
Let N be a normal subgroup of a group G. Then, the inclusion

is a crossed module with the conjugation action of G on N.
For any group G, modules over the group ring are crossed G-modules with d = 0.
For any group H, the homomorphism from H to Aut(H) sending any element of H to the corresponding inner
automorphism is a crossed module. Thus we have a kind of `automorphism structure' of a group, rather than just a
group of automorphisms.
Given any central extension of groups

the onto homomorphism

together with the action of G on H defines a crossed module. Thus, central extensions can be seen as special crossed
modules. Conversely, a crossed module with surjective boundary defines a central extension.
If (X,A,x) is a pointed pair of topological spaces, then the homotopy boundary

from the second relative homotopy group to the fundamental group, may be given the structure of crossed module. It
is a remarkable fact that this functor

satisfies a form of the van Kampen theorem, in that it preserves certain colimits. See the article on crossed objects in
algebraic topology below. The proof involves the concept of homotopy double groupoid of a pointed pair of spaces.
The result on the crossed module of a pair can also be phrased as: if

is a pointed fibration of spaces, then the induced map of fundamental groups

may be given the structure of crossed module. This example is useful in algebraic K-theory. There are higher
dimensional versions of this fact using n-cubes of spaces.

http://en.wikipedia.org/w/index.php?title=Mathematics
http://en.wikipedia.org/w/index.php?title=Homotopy_theory
http://en.wikipedia.org/w/index.php?title=Homomorphism
http://en.wikipedia.org/w/index.php?title=Equivariant
http://en.wikipedia.org/w/index.php?title=Inner_automorphism
http://en.wikipedia.org/w/index.php?title=Peiffer_identity
http://en.wikipedia.org/w/index.php?title=Normal_subgroup
http://en.wikipedia.org/w/index.php?title=Subgroup
http://en.wikipedia.org/w/index.php?title=Module_%28mathematics%29
http://en.wikipedia.org/w/index.php?title=Group_ring
http://en.wikipedia.org/w/index.php?title=Inner_automorphism
http://en.wikipedia.org/w/index.php?title=Inner_automorphism
http://en.wikipedia.org/w/index.php?title=Group_extension%2523Central_extension
http://en.wikipedia.org/w/index.php?title=Topological_spaces
http://en.wikipedia.org/w/index.php?title=Van_Kampen_theorem
http://en.wikipedia.org/w/index.php?title=Fibration
http://en.wikipedia.org/w/index.php?title=Algebraic_K-theory


Crossed module 103

These examples suggest that crossed modules may be thought of as "2-dimensional groups". In fact, this idea can be
made precise using category theory. It can be shown that a crossed module is essentially the same as a categorical
group or 2-group: that is, a group object in the category of categories, or equivalently a category object in the
category of groups. While this may sound intimidating, it simply means that the concept of crossed module is one
version of the result of blending the concepts of "group" and "category". This equivalence is important in
understanding and using even higher dimensional versions of groups.

Classifying space
Any crossed module

has a classifying space BM with the property that its homotopy groups are Coker d , in dimension 1, Ker d in
dimension 2, and 0 above 2. It is possible to describe conveniently the homotopy classes of maps from a
CW-complex to BM. This allows one to prove that (pointed, weak) homotopy 2-types are completely described by
crossed modules.
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• J. Baez and A. Lauda, Higher-dimensional algebra V: 2-groups [1]

• R. Brown, Groupoids and crossed objects in algebraic topology [1]

• R. Brown, Higher dimensional group theory [3]
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• Behrang Noohi, Notes on 2-groupoids, 2-groups and crossed-modules [3]
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Fundamental groupoid
In mathematics, more specifically algebraic topology, the fundamental group or Poincaré group (named after
Henri Poincaré) is a group associated to any given pointed topological space that provides a way of determining
when two paths, starting and ending at a fixed base point, can be continuously deformed into each other. Intuitively,
it records information about the basic shape, or holes, of the topological space. The fundamental group is the first
and simplest of the homotopy groups.
Fundamental groups can be studied using the theory of covering spaces, since a fundamental group coincides with
the group of deck transformations of the associated universal covering space. Its abelianisation can be identified with
the first homology group of the space. When the topological space is homeomorphic to a simplicial complex, its
fundamental group can be described explicitly in terms of generators and relations.
Historically, the concept of fundamental group first emerged in the theory of Riemann surfaces, in the work of
Bernhard Riemann, Henri Poincaré and Felix Klein, where it describes the monodromy properties of complex
functions, as well as providing a complete topological classification of closed surfaces.

Definition
Let X be an arcwise-connected topological space.
Define a path as a continuous function f: [0,1] → X.
Define a loop as a closed path, i.e. a loop is a path f with f(0) = f(1).
Define an equivalence relation between two loops f and g by calling them equivalent iff there is a continuous
function F: [0,1]×[0,1] → X, s.t. F(0, p) = f(p) and F(1, p) = g(p) for all p in [0, 1], and F(t,0) = f(t) = g(t).
Define the inverse of a loop f as a new loop −f, s.t. (−f)(x) = f(1 − x).
For two paths f and g s.t. f(1) = g(0), define addition as a new path f + g, s.t.

To define addition of two loops f and g, choose a path h from f(0) to g(0). Then define f ∗ g = f + h + g + (-h).
In other words, to add loops f and g, create a new loop by tracing f first, then tracing a path h to the starting point of
g, then g, then the same path h back to the starting point of f.
Then the set of all such equivalence classes (i.e. loops in X modulo the equivalence defined above) forms a group
with respect to loop additions. This group is called the fundamental group of the space X.

Intuition
Start with a space (e.g. a surface), and some point in it, and all the loops both starting and ending at this point —
paths that start at this point, wander around and eventually return to the starting point. Two loops can be combined
together in an obvious way: travel along the first loop, then along the second. Two loops are considered equivalent if
one can be deformed into the other without breaking. The set of all such loops with this method of combining and
this equivalence between them is the fundamental group.
For the precise definition, let X be a topological space, and let x0 be a point of X. We are interested in the set of
continuous functions f : [0,1] → X with the property that f(0) = x0 = f(1). These functions are called loops with base
point x0. Any two such loops, say f and g, are considered equivalent if there is a continuous function
h : [0,1] × [0,1] → X with the property that, for all 0 ≤ t ≤ 1, h(t, 0) = f(t), h(t, 1) = g(t) and h(0, t) = x0 = h(1, t). Such
an h is called a homotopy from f to g, and the corresponding equivalence classes are called homotopy classes.
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The product f ∗ g of two loops f and g is defined by setting (f ∗ g)(t) := f(2t) if 0 ≤ t ≤ 1/2 and (f ∗ g)(t) := g(2t − 1) if
1/2 ≤ t ≤ 1. Thus the loop f ∗ g first follows the loop f with "twice the speed" and then follows g with twice the
speed. The product of two homotopy classes of loops [f] and [g] is then defined as [f ∗ g], and it can be shown that
this product does not depend on the choice of representatives.
With the above product, the set of all homotopy classes of loops with base point x0 forms the fundamental group of
X at the point x0 and is denoted

or simply π(X, x0). The identity element is the constant map at the basepoint, and the inverse of a loop f is the loop g
defined by g(t) = f(1 − t). That is, g follows f backwards.
Although the fundamental group in general depends on the choice of base point, it turns out that, up to isomorphism,
this choice makes no difference so long as the space X is path-connected. For path-connected spaces, therefore, we
can write π1(X) instead of π1(X, x0) without ambiguity whenever we care about the isomorphism class only.

Examples
Trivial fundamental group. In Euclidean space Rn, or any convex subset of Rn, there is only one homotopy class of
loops, and the fundamental group is therefore the trivial group with one element. A path-connected space with a
trivial fundamental group is said to be simply connected.
Infinite cyclic fundamental group. The circle. Each homotopy class consists of all loops which wind around the
circle a given number of times (which can be positive or negative, depending on the direction of winding). The
product of a loop which winds around m times and another that winds around n times is a loop which winds around
m + n times. So the fundamental group of the circle is isomorphic to , the additive group of integers. This
fact can be used to give proofs of the Brouwer fixed point theorem and the Borsuk–Ulam theorem in dimension 2.
Since the fundamental group is a homotopy invariant, the theory of the winding number for the complex plane minus
one point is the same as for the circle.
Free groups of higher rank: Graphs. Unlike the homology groups and higher homotopy groups associated to a
topological space, the fundamental group need not be abelian. For example, the fundamental group of the figure
eight is the free group on two letters. More generally, the fundamental group of any graph G is a free group. Here the
rank of the free group is equal to 1 − χ(G): one minus the Euler characteristic of G, when G is connected.
Knot theory. A somewhat more sophisticated example of a space with a non-abelian fundamental group is the
complement of a trefoil knot in R3.

Functoriality
If f : X → Y is a continuous map, x0 ∈ X and y0 ∈ Y with f(x0) = y0, then every loop in X with base point x0 can be
composed with f to yield a loop in Y with base point y0. This operation is compatible with the homotopy equivalence
relation and with composition of loops. The resulting group homomorphism, called the induced homomorphism, is
written as π(f) or, more commonly,

We thus obtain a functor from the category of topological spaces with base point to the category of groups.
It turns out that this functor cannot distinguish maps which are homotopic relative to the base point: if f and g : X →
Y are continuous maps with f(x0) = g(x0) = y0, and f and g are homotopic relative to {x0}, then f* = g*. As a
consequence, two homotopy equivalent path-connected spaces have isomorphic fundamental groups:

The fundamental group functor takes products to products and coproducts to coproducts. That is, if X and Y are path
connected, then
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and

(In the latter formula, denotes the wedge sum of topological spaces, and * the free product of groups.) Both
formulas generalize to arbitrary products. Furthermore the latter formula is a special case of the Seifert–van Kampen
theorem which states that the fundamental group functor takes pushouts along inclusions to pushouts.

Fibrations
A generalization of a product of spaces is given by a fibration,

Here the total space E is a sort of "twisted product" of the base space B and the fiber F. In general the fundamental
groups of B, E and F are terms in a long exact sequence involving higher homotopy groups. When all the spaces are
connected, this has the following consequences for the fundamental groups:
• π1(B) and π1(E) are isomorphic if F is simply connected
• πn+1(B) and πn(F) are isomorphic if E is contractible
The latter is often applied to the situation E = path space of B, F = loop space of B or B = classifying space BG of a
topological group G, B = universal G-bundle EG.

Relationship to first homology group
The fundamental groups of a topological space X are related to its first singular homology group, because a loop is
also a singular 1-cycle. Mapping the homotopy class of each loop at a base point x0 to the homology class of the loop
gives a homomorphism from the fundamental group π1(X, x0) to the homology group H1(X). If X is path-connected,
then this homomorphism is surjective and its kernel is the commutator subgroup of π1(X, x0), and H1(X) is therefore
isomorphic to the abelianization of π1(X, x0). This is a special case of the Hurewicz theorem of algebraic topology.

Universal covering space
If X is a topological space that is path connected, locally path connected and locally simply connected, then it has a
simply connected universal covering space on which the fundamental group π(X,x0) acts freely by deck
transformations with quotient space X. This space can be constructed analogously to the fundamental group by
taking pairs (x, γ), where x is a point in X and γ is a homotopy class of paths from x0 to x and the action of π(X, x0) is
by concatenation of paths. It is uniquely determined as a covering space.

Examples
Let G be a connected, simply connected compact Lie group, for example the special unitary group SUn, and let Γ be
a finite subgroup of G. Then the homogeneous space X = G/Γ has fundamental group Γ, which acts by right
multiplication on the universal covering space G. Among the many variants of this construction, one of the most
important is given by locally symmetric spaces X = Γ\G/K, where
• G is a non-compact simply connected, connected Lie group (often semisimple),
• K is a maximal compact subgroup of G
• Γ is a discrete countable torsion-free subgroup of G.
In this case the fundamental group is Γ and the universal covering space G/K is actually contractible (by the Cartan
decomposition for Lie groups).
As an example take G = SL2(R), K = SO2 and Γ any torsion-free congruence subgroup of the modular group SL2(Z).
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An even simpler example is given by G = R (so that K is trivial) and Γ = Z: in this case X=R/Z = S1.
From the explicit realization, it also follows that the universal covering space of a path connected topological group
H is again a path connected topological group G. Moreover the covering map is a continuous open homomorphism
of G onto H with kernel Γ, a closed discrete normal subgroup of G:

Since G is a connected group with a continuous action by conjugation on a discrete group Γ, it must act trivially, so
that Γ has to be a subgroup of the center of G. In particular π1(H) = Γ is an Abelian group; this can also easily be
seen directly without using covering spaces. The group G is called the universal covering group of H.
As the universal covering group suggests, there is an analogy between the fundamental group of a topological group
and the center of a group; this is elaborated at Lattice of covering groups.

Edge-path group of a simplicial complex
If X is a connected simplicial complex, an edge-path in X is defined to be a chain of vertices connected by edges in
X. Two edge-paths are said to be edge-equivalent if one can be obtained from the other by successively switching
between an edge and the two opposite edges of a triangle in X. If v is a fixed vertex in X, an edge-loop at v is an
edge-path starting and ending at v. The edge-path group E(X, v) is defined to be the set of edge-equivalence classes
of edge-loops at v, with product and inverse defined by concatenation and reversal of edge-loops.
The edge-path group is naturally isomorphic to π1(|X|, v), the fundamental group of the geometric realisation |X| of X.
Since it depends only on the 2-skeleton X2 of X (i.e. the vertices, edges and triangles of X), the groups π1(|X|,v) and
π1(|X2|, v) are isomorphic.
The edge-path group can be described explicitly in terms of generators and relations. If T is a maximal spanning tree
in the 1-skeleton of X, then E(X, v) is canonically isomorphic to the group with generators the oriented edges of X not
occurring in T and relations the edge-equivalences corresponding to triangles in X containing one or more edge not
in T. A similar result holds if T is replaced by any simply connected—in particular contractible—subcomplex of X.
This often gives a practical way of computing fundamental groups and can be used to show that every finitely
presented group arises as the fundamental group of a finite simplicial complex. It is also one of the classical methods
used for topological surfaces, which are classified by their fundamental groups.
The universal covering space of a finite connected simplicial complex X can also be described directly as a
simplicial complex using edge-paths. Its vertices are pairs (w,γ) where w is a vertex of X and γ is an
edge-equivalence class of paths from v to w. The k-simplices containing (w,γ) correspond naturally to the k-simplices
containing w. Each new vertex u of the k-simplex gives an edge wu and hence, by concatenation, a new path γu from
v to u. The points (w,γ) and (u, γu) are the vertices of the "transported" simplex in the universal covering space. The
edge-path group acts naturally by concatenation, preserving the simplicial structure, and the quotient space is just X.
It is well-known that this method can also be used to compute the fundamental group of an arbitrary topological
space. This was doubtless known to Čech and Leray and explicitly appeared as a remark in a paper by Weil (1960);
various other authors such as L. Calabi, W-T. Wu and N. Berikashvili have also published proofs. In the simplest
case of a compact space X with a finite open covering in which all non-empty finite intersections of open sets in the
covering are contractible, the fundamental group can be identified with the edge-path group of the simplicial
complex corresponding to the nerve of the covering.
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Realizability
• Every group can be realized as the fundamental group of a connected CW-complex of dimension 2 (or higher). As

noted above, though, only free groups can occur as fundamental groups of 1-dimensional CW-complexes (that is,
graphs).

• Every finitely presented group can be realized as the fundamental group of a compact, connected, smooth
manifold of dimension 4 (or higher). But there are severe restrictions on which groups occur as fundamental
groups of low-dimensional manifolds. For example, no free abelian group of rank 4 or higher can be realized as
the fundamental group of a manifold of dimension 3 or less.

Related concepts
The fundamental group measures the 1-dimensional hole structure of a space. For studying "higher-dimensional
holes", the homotopy groups are used. The elements of the n-th homotopy group of X are homotopy classes of
(basepoint-preserving) maps from Sn to X.
The set of loops at a particular base point can be studied without regarding homotopic loops as equivalent. This
larger object is the loop space.
For topological groups, a different group multiplication may be assigned to the set of loops in the space, with
pointwise multiplication rather than concatenation. The resulting group is the loop group.

Fundamental groupoid
Rather than singling out one point and considering the loops based at that point up to homotopy, one can also
consider all paths in the space up to homotopy (fixing the initial and final point). This yields not a group but a
groupoid, the fundamental groupoid of the space.

See also
• Homotopy group, generalization of fundamental group
There are also similar notions of fundamental group for algebraic varieties (the étale fundamental group) and for
orbifolds (the orbifold fundamental group).
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External links
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Seifert–van Kampen theorem
In mathematics, the Seifert-van Kampen theorem of algebraic topology, sometimes just called van Kampen's
theorem, expresses the structure of the fundamental group of a topological space , in terms of the fundamental
groups of two open, path-connected subspaces and that cover . It can therefore be used for computations
of the fundamental group of spaces that are constructed out of simpler ones.
The underlying idea is that paths in can be partitioned into journeys: through the intersection of and ,
through but outside , and through outside . In order to move segments of paths around, by homotopy to
form loops returning to a base point in , we should assume , and are path-connected and that 
isn't empty. We also assume that and are open subspaces with union .

Under these conditions, , , and , together with homomorphisms induced by the
inclusion maps of into and :

and

are sufficient data to determine . The maps and extend to an epimorphism:

where is the free product of and . The kernel of the map are the
loops in that, when viewed in , are homotopic to the trivial one at . The group is therefore
isomorphic to modulo such elements, more precisely, to the amalgamated free product

. In particular, when is simply connected (so that its fundamental group is the
trivial group), the theorem says that is isomorphic to the free product .

Equivalent formulations
In the language of combinatorial group theory, is the free product with amalgamation of and

, with respect to the (not necessarily injective) homomorphisms and . Given group presentations:

, and

the amalgamation can be presented as

.
In category theory, is the pushout of the diagram:
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.

Van Kampen's theorem for fundamental groups
Van Kampen's theorem for fundamental groups[1] :
Let X be a topological space which is the union of the interiors of two path connected subspaces , . Suppose

is path connected. Let also and ,

be induced by the inclusions for k= 1, 2. Then X is path connected and the natural

morphism is an isomorphism, that is, the fundamental group of X

is the free product of the fundamental groups of and with amalgamation of .
Usually the morphisms induced by inclusion in this theorem are not themselves injective, and the more precise
version of the statement is in terms of pushouts of groups. The notion of pushout in the category of groupoids allows
for a version of the theorem for the non path connected case, using the fundamental groupoid on a set A
of base points,[2] . This groupoid consists of homotopy classes relative to the end points of paths in X joining points
of . In particular, if X is a contractible space, and A consists of two distinct points of X, then is

easily seen to be isomorphic to the groupoid often written with two vertices and exactly one morphism between
any two vertices. This groupoid plays a role in the theory of groupoids analogous to that of the group of integers in
the theory of groups[3] .
Theorem: Let the topological space X be covered by the interiors of two subspaces and let A be a set

which meets each path component of and . Then A meets each path component of X and

the diagram P of morphisms induced by inclusion

is a pushout diagram in the category of groupoids.[4]

The interpretation of this theorem as a calculational tool for fundamental groups needs some development of
`combinatorial groupoid theory',[5] [6] . This theorem implies the calculation of the fundamental group of the circle as
the group of integers, since the group of integers is obtained from the groupoid by identifying, in the category of
groupoids, its two vertices.

There is a version of the last theorem when X is covered by the union of the interiors of a family of
subsets[7] [8] . The conclusion is that if A meets each path component of all 1,2,3-fold intersections of the sets ,
then A meets all path components of X and the diagram

of morphisms induced by inclusions is a

coequaliser in the category of groupoids.

Examples
One can use Van Kampen's theorem to calculate fundamental groups for topological spaces that can be decomposed 
into simpler spaces. For example, consider the sphere . Pick open sets and where 
n and s denote the north and south poles respectively. Then we have the property that A, B and A B are open path 
connected sets. Thus we can see that there is a commutative diagram including A B into A and B and then another 
inclusion from A and B into and that there is a corresponding diagram of homomorphisms between the
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fundamental groups of each subspace. Applying Van Kampen's theorem gives the result . However A and B are both
homeomorphic to which is simply connected, so both A and B have trivial fundamental groups. It is clear from this
that the fundamental group of is trivial.
A more complicated example is the calculation of the fundamental group of a genus n orientable surface S, otherwise
known as the genus n surface group. One can construct S using its standard fundamental polygon. For the first open
set A, pick a disk within the center of the polygon. Pick B to be the complement in S of the center point of A. Then
the intersection of A and B is an annulus, which is known to be homotopy equivalent to (and so has the same
fundamental group as) a circle. Then , which is the integers, and 
. Thus the inclusion of into sends any generator to the trivial element. However, the inclusion
of into is not trivial. In order to understand this, first one must calculate . This is
easily done as one can deformation retract B (which is S with one point deleted) onto the edges labeled by
A1B1A1

-1B1
-1A2B2A2

-1B2
-1... AnBnAn

-1Bn
-1. This space is known to be the wedge sum of 2n circles (also called a

bouquet of circles), which further is known to have fundamental group isomorphic to the free group with 2n
generators, which in this case can be represented by the edges themselves: . We now
have enough information to apply Van Kampen's theorem. The generators are the loops 
(A is simply connected, so it contributes no generators) and there is exactly one relation:
A1B1A1

-1B1
-1A2B2A2

-1B2
-1... AnBnAn

-1Bn
-1 = 1. Using generators and relations, this group is denoted

Generalizations
This theorem has been extended to the non-connected case by using the fundamental groupoid 1(X,A) on a set A of
base points, which consists of homotopy classes of paths in X joining points of X which lie in A. The connectivity
conditions for the theorem then become that A meets each path-component of U,V,W. The pushout is now in the
category of groupoids. This extended theorem allows the determination of the fundamental group of the circle, and
many other useful cases. For example, if the intersection W has two path components, it is convenient to let A
consist of one point in each of these components. A theorem for arbitrary covers, with the restriction that A meets all
three fold intersections of the sets of the cover, is given in the paper by Brown and Razak cited below. Applications
of the fundamental groupoid on a set of base points to the Jordan curve theorem, Covering space, and orbit space are
given in Ronald Brown's book cited below.
In the case of orbit spaces, it is convenient to take A to include all the fixed points of the action. An example here is
the conjugation action on the circle.
The version that allows more than two overlapping sets but with A a singleton is also given in Allen Hatcher's book
below, theorem 1.20.

In fact, we can extend van Kampen's theorem significantly further by considering the fundamental groupoid ,
a small category whose objects are points of X and whose arrows are paths between points modulo homotopy
equivalence. In this case, to determine the fundamental groupoid of a space, we need only know the fundamental
groupoids of the open sets covering X as follows: create a new category in which the objects are fundamental
groupoids of the open sets, with an arrow between groupoids if the domain space is a subspace of the codomain.
Then van Kampen's theorem is the assertion that the fundamental groupoid of X is the colimit of the diagram. For
details, see Peter May's book, chapter 2.
References to higher dimensional versions of the theorem which yield some information on homotopy types are
given in an article on higher dimensional group theories and groupoids.[9]
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See also
• Higher dimensional algebra
• Higher category theory
• Alexander Grothendieck
• Van Kampen
• Ronald Brown (mathematician)
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Lie groupoid
In mathematics, a Lie groupoid is a groupoid where the set of objects and the set of morphisms are both
manifolds, the source and target operations

are submersions, and all the category operations (source and target, composition, and identity-assigning map) are
smooth.
A Lie groupoid can thus be thought of as a "many-object generalization" of a Lie group, just as a groupoid is a
many-object generalization of a group. Just as every Lie group has a Lie algebra, every Lie groupoid has a Lie
algebroid.

Examples
• Any Lie group gives a Lie groupoid with one object, and conversely. So, the theory of Lie groupoids includes the

theory of Lie groups.
• Given any manifold , there is a Lie groupoid called the pair groupoid, with as the manifold of objects,

and precisely one morphism from any object to any other. In this Lie groupoid the manifold of morphisms is thus
.

• Given a Lie group acting on a manifold , there is a Lie groupoid called the translation groupoid with one
morphism for each triple with .

• Any foliation gives a Lie groupoid.

• Any principal bundle with structure group G gives a groupoid, namely over M, where G
acts on the pairs componentwise. Composition is defined via compatible representatives as in the pair groupoid.
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Morita Morphisms and Smooth Stacks
Beside isomorphism of groupoids there is a more coarse notation of equivalence, the so called Morita equivalence. A
quite general example is the Morita-morphism of the Čech groupoid which goes as follows. Let M be a smooth
manifold and an open cover of M. Define the disjoint union with the obvious submersion

. In order to encode the structure of the manifold M define the set of morphisms 

where . The source and target map are defined as the embeddings and
. And multiplication is the obvious one if we read the as subsets of M (compatible points in

and actually are the same in M and also lie in ).
This Čech groupoid is in fact the pullback groupoid of , i.e. the trivial groupoid over M, under p. That is
what makes it Morita-morphism.
In order to get the notion of an equivalence relation we need to make the construction symmetric and show that it is
also transitive. In this sense we say that 2 groupoids and are Morita equivalent iff there
exists a third groupoid together with 2 Morita morphisms from G to K and H to K. Transitivity is an
interesting construction in the category of groupoid principal bundles and left to the reader.
It arises the question of what is preserved under the Morita equivalence. There are 2 obvious things, one the coarse
quotient/ orbit space of the groupoid and secondly the stabilizer groups for
corresponding points and .
The further question of what is the structure of the coarse quotient space leads to the notion of a smooth stack. We
can expect the coarse quotient to be a smooth manifold if for example the stabilizer groups are trivial (as in the
example of the Čech groupoid). But if the stabilizer groups change we cannot expect a smooth manifold any longer.
The solution is to revert the problem and to define:
A smooth stack is a Morita-equivalence class of Lie groupoids. The natural geometric objects living on the stack are
the geometric objects on Lie groupoids invariant under Morita-equivalence. As an example consider the Lie
groupoid cohomology.

Examples
• The notion of smooth stack is quite general, obviously all smooth manifolds are smooth stacks.
• But also orbifolds are smooth stacks, namely (equivalence classes of) étale groupoids.
• Orbit spaces of foliations are another class of examples

External links
Alan Weinstein, Groupoids: unifying internal and external symmetry, AMS Notices, 43 (1996), 744-752. Also
available as arXiv:math/9602220 [1]

Kirill Mackenzie, Lie Groupoids and Lie Algebroids in Differential Geometry, Cambridge U. Press, 1987.
Kirill Mackenzie, General Theory of Lie Groupoids and Lie Algebroids, Cambridge U. Press, 2005
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Lie algebroid
In mathematics, Lie algebroids serve the same role in the theory of Lie groupoids that Lie algebras serve in the
theory of Lie groups: reducing global problems to infinitesimal ones. Just as a Lie groupoid can be thought of as a
"Lie group with many objects", a Lie algebroid is like a "Lie algebra with many objects".

More precisely, a Lie algebroid is a triple consisting of a vector bundle over a manifold ,
together with a Lie bracket on its module of sections and a morphism of vector bundles

called the anchor. Here is the tangent bundle of . The anchor and the bracket are to
satisfy the Leibniz rule:

where and is the derivative of along the vector field . It
follows that

for all .

Examples
• Every Lie algebra is a Lie algebroid over the one point manifold.
• The tangent bundle of a manifold is a Lie algebroid for the Lie bracket of vector fields and the identity

of as an anchor.
• Every integrable subbundle of the tangent bundle — that is, one whose sections are closed under the Lie bracket

— also defines a Lie algebroid.
• Every bundle of Lie algebras over a smooth manifold defines a Lie algebroid where the Lie bracket is defined

pointwise and the anchor map is equal to zero.
• To every Lie groupoid is associated a Lie algebroid, generalizing how a Lie algebra is associated to a Lie group

(see also below). For example, the Lie algebroid comes from the pair groupoid whose objects are , with
one isomorphism between each pair of objects. Unfortunately, going back from a Lie algebroid to a Lie groupoid
is not always possible[1] , but every Lie algebroid gives a stacky Lie groupoid[2] [3] .

• Given the action of a Lie algebra g on a manifold M, the set of g -invariant vector fields on M is a Lie algebroid
over the space of orbits of the action.

• Atiyah algebroid. Given a vector bundle over a smooth manifold consider its derivations, i.e. smooth 
-linear maps for which exists a vector field X such that they fulfill the Leibniz rule

for all smooth functions f and all sections v into the vector bundle. The association
is clearly linear and thus comes from a map of vector bundles (if you find the

bundle whose sections give the derivations). The Atiyah algebroid is further characterized by fitting into the
following short exact sequence: To see that the Atiyah algebroid
exists for every vector bundle note that it is the Lie algebroid associated to the Lie groupoid coming from the
frame bundle of the vector bundle V.
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Lie algebroid associated to a Lie groupoid
To describe the construction let us fix some notation. G is the space of morphisms of the Lie groupoid, M the space
of objects, the units and the target map.

the t-fiber tangent space. The Lie algebroid is now the vector bundle

. This inherits a bracket from G, because we can identify the M-sections into A with left-invariant
vector fields on G. Further these sections act on the smooth functions of M by identifying these with left-invariant
functions on G.
As a more explicit example consider the Lie algebroid associated to the pair groupoid . The target
map is and the units . The t-fibers are and

therefore . So the Lie algebroid is the vector bundle

. The extension of sections X into A to left-invariant vector fields on G is

simply and the extension of a smooth function f from M to a left-invariant function on G is
. Therefore the bracket on A is just the Lie bracket of tangent vector fields and the anchor map is

just the identity.
Of course you could do an analog construction with the source map and right-invariant vector fields/ functions.
However you get an isomorphic Lie algebroid, with the explicit isomorphism , where is the inverse
map.

External links
• Alan Weinstein, Groupoids: unifying internal and external
symmetry, AMS Notices, 43 (1996), 744-752. Also available as arXiv:math/9602220 [1]

• Kirill Mackenzie, Lie Groupoids and Lie Algebroids in Differential Geometry, Cambridge U. Press, 1987.
• Kirill Mackenzie, General Theory of Lie Groupoids and Lie Algebroids, Cambridge U. Press, 2005
• Charles-Michel Marle, Differential calculus on a Lie algebroid and Poisson manifolds (2002). Also available in

arXiv:0804.2451 [4]
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Chain complex
In mathematics, chain complex and cochain complex are constructs originally used in the field of algebraic
topology. They are algebraic means of representing the relationships between the cycles and boundaries in various
dimensions of some "space". Here the "space" could be a topological space or an algebraic construction such as a
simplicial complex. More generally, homological algebra includes the study of chain complexes in the abstract,
without any reference to an underlying space. In this case, chain complexes are studied axiomatically as algebraic
structures.
Applications of chain complexes usually define and apply their homology groups (cohomology groups for cochain
complexes); in more abstract settings various equivalence relations are applied to complexes (for example starting
with the chain homotopy idea). Chain complexes are easily defined in abelian categories, also.

Formal definition
A chain complex is a sequence of abelian groups or modules ... A2, A1, A0, A-1, A-2, ... connected by
homomorphisms (called boundary operators) dn : An→An−1, such that the composition of any two consecutive
maps is zero: dn ∘ dn+1 = 0 for all n. They are usually written out as:

A variant on the concept of chain complex is that of cochain complex. A cochain complex is a sequence
of abelian groups or modules ..., , , , , , ... connected by homomorphisms 
such that the composition of any two consecutive maps is zero: for all n:

The idea is basically the same. In either case, the index in resp. is referred to as the degree (or
dimension).
A bounded chain complex is one in which almost all the Ai are 0; i.e., a finite complex extended to the left and right
by 0's. An example is the complex defining the homology theory of a (finite) simplicial complex. A chain complex is
bounded above if all degrees above some fixed degree N are 0, and is bounded below if all degrees below some
fixed degree are 0. Clearly, a complex is bounded above and below iff the complex is bounded.

Fundamental terminology
Leaving out the indices, the basic relation on d can be thought of as

The elements of the individual groups of a chain complex are called chains (or cochains in the case of a cochain
complex.) The image of d is the group of boundaries, or in a cochain complex, coboundaries. The kernel of d (i.e.,
the subgroup sent to 0 by d) is the group of cycles, or in the case of a cochain complex, cocycles. From the basic
relation, the (co)boundaries lie inside the (co)cycles. This phenomenon is studied in a systematic way using
(co)homology groups.
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Examples

Singular homology
Suppose we are given a topological space X.
Define Cn(X) for natural n to be the free abelian group formally generated by singular n-simplices in X, and define
the boundary map

where the hat denotes the omission of a vertex. That is, the boundary of a singular simplex is alternating sum of
restrictions to its faces. It can be shown ∂² = 0, so is a chain complex; the singular homology is
the homology of this complex; that is,

de Rham cohomology
The differential k-forms on any smooth manifold M form an abelian group (in fact an R-vector space) called Ωk(M)
under addition. The exterior derivative dk maps Ωk(M) to Ωk+1(M), and d 2 = 0 follows essentially from symmetry of
second derivatives, so the vector spaces of k-forms along with the exterior derivative are a cochain complex:

The homology of this complex is the de Rham cohomology

{locally constant functions on M with values in F} #{connected pieces of M}

Chain maps
A chain map f between two chain complexes and is a sequence of module
homomorphisms for each n that intertwines with the differentials on the two chain complexes:

. Such a map sends cycles to cycles and boundaries to boundaries, and thus descends to
a map on homology: .
A continuous map of topological spaces induces chain maps in both the singular and de Rham chain complexes
described above (and in general for the chain complex defining any homology theory of topological spaces) and thus
a continuous map induces a map on homology. Because the map induced on a composition of maps is the
composition of the induced maps, these homology theories are functors from the category of topological spaces with
continuous maps to the category of abelian groups with group homomorphisms.
It is worth noticing that the concept of chain map reduces to the one of boundary through the construction of the
cone of a chain map.
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Chain homotopy
Chain homotopies give an important equivalence relation between chain maps. Chain homotopic chain maps induce
the same maps on homology groups. A particular case is that homotopic maps between two spaces X and Y induce
the same maps from homology of X to homology of Y. Chain homotopies have a geometric interpretation; it is
described, for example, in the book of Bott and Tu. See Homotopy category of chain complexes for further
information.

See also
• Homology
• Differential graded algebra
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Homology
In mathematics (especially algebraic topology and abstract algebra), homology (in Greek ὁμός homos "identical") is
a certain general procedure to associate a sequence of abelian groups or modules with a given mathematical object
such as a topological space or a group. See homology theory for more background, or singular homology for a
concrete version for topological spaces, or group cohomology for a concrete version for groups.
For a topological space, the homology groups are generally much easier to compute than the homotopy groups, and
consequently one usually will have an easier time working with homology to aid in the classification of spaces.

Construction of homology groups
The procedure works as follows. Given an object such as a topological space , one first defines a chain complex

encoding information about . A chain complex is a sequence of abelian groups or modules
connected by homomorphisms which we call boundary operators. That is,

where denotes the trivial group and for . We also require the composition of any two consecutive
boundary operators to be zero. That is, for all ,

,

i.e., the constant map to the group identity in . This means .
Now since each is abelian, is a normal subgroup of . And we want to mod out by this
subgroup, i.e., consider everything in equivalent and partition using this equivalence relation.
We define the n-th homology group of X to be the factor group (or quotient module)

We also use the notation and , so

Computing these two groups is usually rather difficult since they are very large groups. On the other hand, we do
have tools which make the task easier.
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The simplicial homology groups of a simplicial complex are defined using the simplicial chain complex
, with the free abelian group generated by the -simplices of . The singular homology groups

are defined for any topological space , and agree with the simplicial homology groups for a simplicial
complex.
A chain complex is said to be exact if the image of the (n + 1)-th map is always equal to the kernel of the nth map.
The homology groups of therefore measure "how far" the chain complex associated to is from being exact.
Cohomology groups are formally similar: one starts with a cochain complex, which is the same as a chain complex
but whose arrows, now denoted point in the direction of increasing n rather than decreasing n; then the groups

and follow from the same description and

, as before.

Examples
The motivating example comes from algebraic topology: the simplicial homology of a simplicial complex .
Here is the free abelian group or module whose generators are the n-dimensional oriented simplexes of .
The mappings are called the boundary mappings and send the simplex with vertices

to the sum

(which is considered if ).
If we take the modules to be over a field, then the dimension of the n-th homology of turns out to be the number
of "holes" in at dimension n.
Using this example as a model, one can define a singular homology for any topological space . We define a
chain complex for by taking to be the free abelian group (or free module) whose generators are all
continuous maps from n-dimensional simplices into . The homomorphisms arise from the boundary maps of
simplices.
In abstract algebra, one uses homology to define derived functors, for example the Tor functors. Here one starts with
some covariant additive functor and some module . The chain complex for is defined as follows: first
find a free module and a surjective homomorphism . Then one finds a free module and a
surjective homomorphism . Continuing in this fashion, a sequence of free modules and
homomorphisms can be defined. By applying the functor to this sequence, one obtains a chain complex; the
homology of this complex depends only on and and is, by definition, the n-th derived functor of ,
applied to .

Homology functors
Chain complexes form a category: A morphism from the chain complex to the chain complex

is a sequence of homomorphisms such that for all n.
The n-th homology Hn can be viewed as a covariant functor from the category of chain complexes to the category of
abelian groups (or modules).
If the chain complex depends on the object X in a covariant manner (meaning that any morphism X → Y induces a
morphism from the chain complex of X to the chain complex of Y), then the Hn are covariant functors from the
category that X belongs to into the category of abelian groups (or modules).
The only difference between homology and cohomology is that in cohomology the chain complexes depend in a 
contravariant manner on X, and that therefore the homology groups (which are called cohomology groups in this
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context and denoted by Hn) form contravariant functors from the category that X belongs to into the category of
abelian groups or modules.

Properties
If is a chain complex such that all but finitely many are zero, and the others are finitely
generated abelian groups (or finite dimensional vector spaces), then we can define the Euler characteristic

(using the rank in the case of abelian groups and the Hamel dimension in the case of vector spaces). It turns out that
the Euler characteristic can also be computed on the level of homology:

and, especially in algebraic topology, this provides two ways to compute the important invariant for the object
which gave rise to the chain complex.

Every short exact sequence

of chain complexes gives rise to a long exact sequence of homology groups

All maps in this long exact sequence are induced by the maps between the chain complexes, except for the maps
The latter are called connecting homomorphisms and are provided by the snake lemma.

History
The homology group was developed by Emmy Noether[1] [2] and, independently, by Leopold Vietoris and Walther
Mayer, in the period 1925–28.[3] Prior to this, topological classes in combinatorial topology were not formally
considered as abelian groups. The spread of homology groups marked the change of terminology and viewpoint from
"combinatorial topology" to "algebraic topology".[4]

See also
• Simplicial homology
• Singular homology
• Cellular homology
• Homology theory
• Homological algebra
• Cohomology
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Homology theory
In mathematics, homology theory is the axiomatic study of the intuitive geometric idea of homology of cycles on
topological spaces. It can be broadly defined as the study of homology theories on topological spaces.

Simple explanation
At the intuitive level homology is taken to be an equivalence relation, such that chains C and D are homologous on
the space X if the chain C − D is a boundary of a chain of one dimension higher. The simplest case is in graph
theory, with C and D vertices and homology with a meaning coming from the oriented edge E from P to Q having
boundary Q — P. A collection of edges from D to C, each one joining up to the one before, is a homology. In
general, a k-chain is thought of as a formal combination

where the are integers and the are k-dimensional simplices on X. The boundary concept here is that taken
over from the boundary of a simplex; it allows a high-dimensional concept which for k = 1 is the kind of telescopic
cancellation seen in the graph theory case. This explanation is in the style of 1900, and proved somewhat naive,
technically speaking.

Example of a torus surface

A torus with generators colored in pink and red.

For example if X is a 2-torus T, a one-dimensional cycle on T is in
intuitive terms a linear combination of curves drawn on T, which
closes up on itself (cycle condition, equivalent to having no net
boundary). If C and D are cycles each wrapping once round T in the
same way, we can find explicitly an oriented area on T with boundary
C − D. One can prove that the homology classes of 1-cycles with
integer coefficients form a free abelian group with two generators, one
generator for each of the two different ways round the 'doughnut'.

The nineteenth century
This level of understanding was common property in the mathematics of the nineteenth century, starting with the
idea of Riemann surface. At the end of the century, the work of Poincaré had provided a much more general, though
still intuitively-based, setting.
For example, it is considered that the general Stokes' theorem was first stated in 1899 by Poincaré: it involves
necessarily both an integrand (we would now say, a differential form), and a region of integration (a p-chain), with
two kinds of boundary operators, one of which in modern terms is the exterior derivative, and the other a geometric
boundary operator on chains that includes orientation and can be used for homology theory. The two boundaries
appear as adjoint operators, with respect to integration.
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Twentieth century beginnings
Rather loose, geometric arguments with homology were only gradually replaced at the beginning of the twentieth
century by rigorous techniques. To begin with, the style of the era was to use combinatorial topology (the
fore-runner of today's algebraic topology). That assumes that the spaces treated are simplicial complexes, while the
most interesting spaces are usually manifolds, so that artificial triangulations have to be introduced to apply the tools.
Pioneers such as Solomon Lefschetz and Marston Morse still preferred a geometric approach. The combinatorial
stance did allow Brouwer to prove foundational results such as the simplicial approximation theorem, at the base of
the idea that homology is a functor (as it would later be put). Brouwer was able to prove the Jordan curve theorem,
basic for complex analysis, and the invariance of domain, using the new tools; and remove the suspicion attached to
topological arguments as handwaving.

Towards algebraic topology
The transition to algebraic topology is usually attributed to the influence of Emmy Noether, who insisted that
homology classes lay in quotient groups — a point of view now so fundamental that it is taken as a definition.[1] In
fact Noether in the period from 1920 onwards was with her students elaborating the theory of modules for any ring,
giving rise when the two ideas were combined to the concept of homology with coefficients in a ring. Before that,
coefficients (that is, the sense in which chains are linear combinations of the basic geometric chains traced on the
space) had usually been integers, real or complex numbers, or sometimes residue classes mod 2. In the new setting,
there would be no reason not to take residues mod 3, for example: to be a cycle is then a more complex geometric
condition, exemplified in graph theory terms by having the number of incoming edges at every vertex a multiple of
3. But in algebraic terms, the definitions present no new problem. The universal coefficient theorem explains that
homology with integer coefficients determines all other homology theories, by use of the tensor product; it is not
anodyne, in that (as we would now put it) the tensor product has derived functors that enter into a general
formulation.

Cohomology, and singular homology
The 1930s were the decade of the development of cohomology theory, as several research directions grew together
and the De Rham cohomology that was implicit in Poincaré's work cited earlier became the subject of definite
theorems. Cohomology and homology are dual theories, in a sense that required detailed working out; at the same
time it was realised that homology, that was, simplicial homology, was far from being at the end of its story. The
definition of singular homology avoided the need for the apparatus of triangulations, at a cost of moving to
infinitely-generated modules.

Axiomatics and extraordinary theories
The development of algebraic topology from 1940 to 1960 was very rapid, and the role of homology theory was
often as 'baseline' theory, easy to compute and in terms of which topologists sought to calculate with other functors.
The axiomatisation of homology theory by Eilenberg and Steenrod (the Eilenberg-Steenrod axioms) revealed that
what various candidate homology theories had in common was, roughly speaking, some exact sequences and in
particular the Mayer–Vietoris sequence, and the dimension axiom that calculated the homology of the point. The
dimension axiom was relaxed to admit the (co)homology derived from topological K-theory, and cobordism theory,
in a vast extension to the extraordinary (co)homology theories that became standard in homotopy theory. These
can be easily characterised for the category of CW complexes.
• List of cohomology theories
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Current state of homology theory
For more general (i.e. less well-behaved) spaces, recourse to ideas from sheaf theory brought some extension of
homology theories, particularly the Borel-Moore homology for locally compact spaces.
The basic chain complex apparatus of homology theory has long since become a separate piece of technique in
homological algebra, and has been applied independently, for example to group cohomology. Therefore there is no
longer one homology theory, but many homology and cohomology theories in mathematics.
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Homological algebra
Homological algebra is the branch of mathematics which studies homology in a general algebraic setting. It is a
relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precursor to
algebraic topology) and abstract algebra (theory of modules and syzygies) at the end of the 19th century, chiefly by
Henri Poincaré and David Hilbert.
The development of homological algebra was closely intertwined with the emergence of category theory. By and
large, homological algebra is the study of homological functors and the intricate algebraic structures that they entail.
The hidden fabric of mathematics is woven of chain complexes, which manifest themselves through their homology
and cohomology. Homological algebra affords the means to extract information contained in these complexes and
present it in the form of homological invariants of rings, modules, topological spaces, and other 'tangible'
mathematical objects. A powerful tool for doing this is provided by spectral sequences.
From its very origins, homological algebra has played an enormous role in algebraic topology. Its sphere of influence
has gradually expanded and presently includes commutative algebra, algebraic geometry, algebraic number theory,
representation theory, mathematical physics, operator algebras, complex analysis, and the theory of partial
differential equations. K-theory is an independent discipline which draws upon methods of homological algebra, as
does the noncommutative geometry of Alain Connes.

Chain complexes and homology
The chain complex is the central notion of homological algebra. It is a sequence of abelian groups and
group homomorphisms, with the property that the composition of any two consecutive maps is zero:

The elements of Cn are called n-chains and the homomorphisms dn are called the boundary maps or differentials. 
The chain groups Cn may be endowed with extra structure; for example, they may be vector spaces or modules over 
a fixed ring R. The differentials must preserve the extra structure if it exists; for example, they must be linear maps 
or homomorphisms of R-modules. For notational convenience, restrict attention to abelian groups (more correctly, to 
the category Ab of abelian groups); a celebrated theorem by Barry Mitchell implies the results will generalize to any 
abelian category. Every chain complex defines two further sequences of abelian groups, the cycles Zn = Ker dn and 
the boundaries Bn = Im dn+1, where Ker d and Im d denote the kernel and the image of d. Since the composition of
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two consecutive boundary maps is zero, these groups are embedded into each other as

Subgroups of abelian groups are automatically normal; therefore we can define the nth homology group Hn(C) as
the factor group of the n-cycles by the n-boundaries,

A chain complex is called acyclic or an exact sequence if all its homology groups are zero.
Chain complexes arise in abundance in algebra and algebraic topology. For example, if X is a topological space then
the singular chains Cn(X) are formal linear combinations of continuous maps from the standard n-simplex into X; if
K is a simplicial complex then the simplicial chains Cn(K) are formal linear combinations of the n-simplices of X; if
A = F/R is a presentation of an abelian group A by generators and relations, where F is a free abelian group spanned
by the generators and R is the subgroup of relations, then letting C1(A) = R, C0(A) = F, and Cn(A) = 0 for all other n
defines a sequence of abelian groups. In all these cases, there are natural differentials dn making Cn into a chain
complex, whose homology reflects the structure of the topological space X, the simplicial complex K, or the abelian
group A. In the case of topological spaces, we arrive at the notion of singular homology, which plays a fundamental
role in investigating the properties of such spaces, for example, manifolds.
On a philosophical level, homological algebra teaches us that certain chain complexes associated with algebraic or
geometric objects (topological spaces, simplicial complexes, R-modules) contain a lot of valuable algebraic
information about them, with the homology being only the most readily available part. On a technical level,
homological algebra provides the tools for manipulating complexes and extracting this information. Here are two
general illustrations.
• Two objects X and Y are connected by a map f between them. Homological algebra studies the relation, induced

by the map f, between chain complexes associated to X and Y and their homology. This is generalized to the case
of several objects and maps connecting them. Phrased in the language of category theory, homological algebra
studies the functorial properties of various constructions of chain complexes and of the homology of these
complexes.

• An object X admits multiple descriptions (for example, as a topological space and as a simplicial complex) or the
complex is constructed using some 'presentation' of X, which involves non-canonical choices. It is
important to know the effect of change in the description of X on chain complexes associated to X. Typically, the
complex and its homology are functorial with respect to the presentation; and the homology (although
not the complex itself) is actually independent of the presentation chosen, thus it is an invariant of X.

Functoriality
A continuous map of topological spaces gives rise to a homomorphism between their nth homology groups for all n.
This basic fact of algebraic topology finds a natural explanation through certain properties of chain complexes. Since
it is very common to study several topological spaces simultaneously, in homological algebra one is led to
simultaneous consideration of multiple chain complexes.
A morphism between two chain complexes, , is a family of homomorphisms of abelian groups
Fn:Cn → Dn that commute with the differentials, in the sense that Fn -1 •  dn

C = dn
D • Fn for all n. A morphism of

chain complexes induces a morphism of their homology groups, consisting of the homomorphisms
Hn(F): Hn(C) → Hn(D) for all n. A morphism F is called a quasi-isomorphism if it induces an isomorphism on the
nth homology for all n.
Many constructions of chain complexes arising in algebra and geometry, including singular homology, have the 
following functoriality property: if two objects X and Y are connected by a map f, then the associated chain 
complexes are connected by a morphism F = C(f) from to and moreover, the composition g • f of 
maps f: X → Y and g: Y → Z induces the morphism C(g • f) from to that coincides with the
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composition C(g) • C(f). It follows that the homology groups are functorial as well, so that morphisms between
algebraic or topological objects give rise to compatible maps between their homology.
The following definition arises from a typical situation in algebra and topology. A triple consisting of three chain
complexes and two morphisms between them, is called an exact

triple, or a short exact sequence of complexes, and written as

if for any n, the sequence

is a short exact sequence of abelian groups. By definition, this means that fn is an injection, gn is a surjection, and Im
fn =  Ker gn. One of the most basic theorems of homological algebra, sometimes known as the zig-zag lemma, states
that, in this case, there is a long exact sequence in homology

where the homology groups of L, M, and N cyclically follow each other, and δn are certain homomorphisms
determined by f and g, called the connecting homomorphisms. Topological manifestations of this theorem include
the Mayer–Vietoris sequence and the long exact sequence for relative homology.

Foundational aspects
Cohomology theories have been defined for many different objects such as topological spaces, sheaves, groups,
rings, Lie algebras, and C*-algebras. The study of modern algebraic geometry would be almost unthinkable without
sheaf cohomology.
Central to homological algebra is the notion of exact sequence; these can be used to perform actual calculations. A
classical tool of homological algebra is that of derived functor; the most basic examples are functors Ext and Tor.
With a diverse set of applications in mind, it was natural to try to put the whole subject on a uniform basis. There
were several attempts before the subject settled down. An approximate history can be stated as follows:
• Cartan-Eilenberg: In their 1956 book "Homological Algebra", these authors used projective and injective module

resolutions.
• 'Tohoku': The approach in a celebrated paper by Alexander Grothendieck which appeared in the Second Series of

the Tohoku Mathematical Journal in 1957, using the abelian category concept (to include sheaves of abelian
groups).

• The derived category of Grothendieck and Verdier. Derived categories date back to Verdier's 1967 thesis. They
are examples of triangulated categories used in a number of modern theories.

These move from computability to generality.
The computational sledgehammer par excellence is the spectral sequence; these are essential in the Cartan-Eilenberg
and Tohoku approaches where they are needed, for instance, to compute the derived functors of a composition of
two functors. Spectral sequences are less essential in the derived category approach, but still play a role whenever
concrete computations are necessary.
There have been attempts at 'non-commutative' theories which extend first cohomology as torsors (important in
Galois cohomology).
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See also
• Homotopical algebra
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Group cohomology
In abstract algebra, homological algebra, algebraic topology and algebraic number theory, as well as in applications
to group theory proper, group cohomology is a way to study groups using a sequence of functors H n. The study of
fixed points of groups acting on modules and quotient modules is a motivation, but the cohomology can be defined
using various constructions. There is a dual theory, group homology, and a generalization to non-abelian
coefficients. These algebraic ideas are closely related to topological ideas. A great deal is known about the
cohomology of groups, including interpretations of low dimensional cohomology, functorality, and how to change
groups. The history of group cohomology began in the 1920s, matured in the late 1940s, and continues as an area of
active research today.

Motivation
A general paradigm in group theory is that a group G should be studied via its group representations. A slight
generalization of those representations are the G-modules: a G-module is an abelian group M together with a group
action of G on M, with every element of G acting as an endomorphism of M. In the sequel we will write G
multiplicatively and M additively.
Given such a G-module M, it is natural to consider the subgroup of G-invariant elements:

Now, if N is a submodule of M (i.e. a subgroup of M mapped to itself by the action of G), it isn't in general true that 
the invariants in M/N are found as the quotient of the invariants in M by N: being invariant 'up to something in N ' is 
broader. The first group cohomology H1(G,N) precisely measures the difference. The group cohomology functors Hn 

in general measure the extent to which taking invariants doesn't respect exact sequences. This is expressed by a long
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exact sequence.

Formal constructions
In this article, G is a finite group. The collection of all G-modules is a category (the morphisms are group
homomorphisms f with the property f(gx) = g(f(x)) for all g in G and x in M). This category of G-modules is an
abelian category with enough injectives (since it is isomorphic to the category of all modules over the group ring
ℤ[G]).
Sending each module M to the group of invariants MG yields a functor from this category to the category of
abelian groups. This functor is left exact but not necessarily right exact. We may therefore form its right derived
functors; their values are abelian groups and they are denoted by Hn(G,M), "the n-th cohomology group of G with
coefficients in M". H0(G,M) is identified with MG.

Long exact sequence of cohomology
In practice, one often computes the cohomology groups using the following fact: if

is a short exact sequence of G-modules, then a long exact sequence

is induced. The maps δn are called the "connecting homomorphisms" and can be obtained from the snake lemma.[1]

Cochain complexes
Rather than using the machinery of derived functors, the cohomology groups can also be defined more concretely, as
follows.[2] For n ≥ 0, let Cn(G, M) be the group of all functions from Gn to M. This is an abelian group; its elements
are called the (inhomogeneous) n-cochains. The coboundary homomorphisms

are defined as

The crucial thing to check here is

thus we have a cochain complex and we can compute cohomology. For n ≥ 0, define the group of n-cocycles as:

and the group of -coboundaries as

and
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The functors Extn and formal definition of group cohomology
Yet another approach is to treat G-modules as modules over the group ring ℤ[G], which allows one to define group
cohomology via Ext functors:

where M is a ℤ[G]-module.
Here ℤ is treated as the trivial G-module: every element of G acts as the identity. These Ext groups can also be
computed via a projective resolution of ℤ, the advantage being that such a resolution only depends on G and not on
M. We recall the definition of Ext more explicitly for this context. Let F be a projective ℤ[G]-resolution (e.g. a free
ℤ[G]-resolution) of the trivial ℤ[G]-module ℤ:

e.g., one may always take the resolution of group rings, , with morphisms

Recall that for ℤ[G]-modules N and M, HomG(N, M) is an abelian group consisting of ℤ[G]-homomorphisms from N
to M. Since HomG(–, M) is a contravariant functor and reverses the arrows, applying HomG(–, M) to F termwise
produces a cochain complex HomG(F, M):

The cohomology groups H*(G,M) of G with coefficients in M are defined as the cohomology of the above cochain
complex:

Hn(G,M)=Hn(HomG(F, M))
for n ≥ 0.

Group homology
Dually to the construction of group cohomology there is the following definition of group homology: given a
G-module M, set DM to be the submodule generated by elements of the form g·m-m, g∈G, m∈M. Assigning to M its
so-called co-invariants, the quotient

MG := M/DM,
is a right exact functor. Its left derived functors are by definition the group homology

Hn(G, M).

The covariant functor which assigns MG to M is isomorphic to the functor which sends M to , where
is endowed with the trivial G-action. Hence one also gets an expression for group homology in terms of the Tor

functors,

Recall that the tensor product is defined whenever N is a right ℤ[G]-module and M is a left
ℤ[G]-module. If N is a left ℤ[G]-module, we turn it into a right ℤ[G]-module by setting a g = g− 1 a for every g ∈ G
and every a ∈ N. This convention allows to define the tensor product in the case where both M and N
are left ℤ[G]-modules.
Specifically, the homology groups Hn(G, M) can be computed as follows. Start with a projective resolution F of the
trivial ℤ[G]-module ℤ, as in the previous section. Apply the covariant functor to F termwise to get a chain
complex :

Then Hn(G, M) are the homology groups of this chain complex, for n ≥ 0.
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Group homology and cohomology can be treated uniformly for some groups, especially finite groups, in terms of
complete resolutions and the Tate cohomology groups.

Functorial maps in terms of cochains

Connecting homomorphisms
For a short exact sequence 0 → L → M → N → 0, the connecting homomorphisms δn : Hn(G, N) → Hn+1(G, L) can
be described in terms of inhomogeneous cochains as follows.[3] If c is an element of Hn(G, N) represented by an
n-cocycle φ : Gn → N, then δn(c) is represented by dn(ψ), where ψ is an n-cochain Gn → M "lifting" φ (i.e. such that
φ is the composition of ψ with the surjective map M → N).

Non-abelian group cohomology
Using the G-invariants and the 1-cochains, one can construct the zeroth and first group cohomology for a group G
with coefficients in a non-abelian group. Specifically, a G-group is a (not necessarily abelian) group A together with
an action by G.
The zeroth cohomology of G with coefficients in A is

which is a subgroup of A.
The first cohomology of G with coefficents in A is defined as above using 1-cocycles and 1-coboundaries. However,
it is generally not a group when A is non-abelian. It instead has the structure of a pointed set.
Using explicit calculations, one still obtains a truncated long exact sequence in cohomology. Specifically, let

be a short exact sequence of G-groups, then there is an exact sequence of pointed sets

Connections with topological cohomology theories
Group cohomology can be related to topological cohomology theories: to the topological group G there is an
associated classifying space BG. (If G has no topology about which we care, then we assign the discrete topology to
G. In this case, BG is an Eilenberg-MacLane space K(G,1), whose fundamental group is G and whose higher
homotopy groups vanish). The n-th cohomology of BG, with coefficients in M (in the topological sense), is the same
as the group cohomology of G with coefficients in M. This will involve a local coefficient system unless M is a
trivial G-module. The connection holds because the total space EG is contractible, so its chain complex forms a
projective resolution of M. These connections are explained in (Adem-Milgram 2004), Chapter II.
When M is a ring with trivial G-action, we inherit good properties which are familiar from the topological context: in
particular, there is a cup product under which

is a graded module, and a Künneth formula applies.

If, furthermore, M=k is a field, then is a graded k-algebra. In this case, the Künneth formula yields

For example, let G be the group with two elements, under the discrete topology. The real projective space ℝP∞ is a
classifying space for G. Let k=F2, the field of two elements. Then
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a polynomial k-algebra on a single generator, since this is the cellular cohomology ring of ℝP∞.
Hence, as a second example, if G is an elementary abelian 2-group of rank r, and k=F2, then the Künneth formula
gives

,
a polynomial k-algebra generated by r classes in .

Properties
In the following, let M be a G-module.

Functoriality
Group cohomology depends contravariantly on the group G, in the following sense: if f : H → G is a group
homomorphism, then we have a naturally induced morphism Hn(G,M) → Hn(H,M) (where in the latter case, M is
treated as an H-module via f).
Given a morphism of G-modules M→N, one gets a morphism of cohomology groups in the Hn(G,M) → Hn(G,N).

H1

The first cohomology group is the quotient of the so-called crossed homomorphisms, i.e. maps (of sets)
satisfying for all in , modulo the so-called principal crossed

homomorphisms, i.e. maps given by for some fixed . This follows
from the definition of cochains above.
If the action of G on M is trivial, then the above boils down to , the group of group
homomorphisms .

H2

If M is a trivial G-module (i.e. the action of G on M is trivial), the second cohomology group H2(G,M) is in
one-to-one correspondence with the set of central extensions of G by M (up to a natural equivalence relation). More
generally, if the action of G on M is nontrivial, H2(G,M) classifies the isomorphism classes of all extensions of G by
M in which the induced action of G on M by inner automorphisms agrees with the given action.

Change of group
The Hochschild-Serre spectral sequence relates the cohomology of a normal subgroup N of G and the quotient G/N
to the cohomology of the group G (for (pro-)finite groups G).

History and relation to other fields
The low dimensional cohomology of a group was classically studied in other guises, long before the notion of group
cohomology was formulated in 1943-45. The first theorem of the subject can be identified as Hilbert's Theorem 90 in
1897; this was recast into Noether's equations in Galois theory (an appearance of cocycles for H1). The idea of factor
sets for the extension problem for groups (connected with H2) arose in the work of Hölder (1893), in Issai Schur's
1904 study of projective representations, in Schreier's 1926 treatment, and in Richard Brauer's 1928 study of simple
algebras and the Brauer group. A fuller discussion of this history may be found in (Weibel 1999, pp. 806-811).

In 1941, while studying (which plays a special role in groups), Hopf discovered what is now called
Hopf's integral homology formula (Hopf 1942), which is identical to Schur's formula for the Schur multiplier of a
finite, finitely presented group:

, where and F is a free group.
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Hopf's result led to the independent discovery of group cohomology by several groups in 1943-45: Eilenberg and
Mac Lane in the USA (Rotman 1995, p. 358); Hopf and Eckmann in Switzerland; and Freudenthal in the
Netherlands (Weibel 1999, p. 807). The situation was chaotic because communication between these countries was
difficult during World War II.
From a topological point of view, the homology and cohomology of G was first defined as the homology and
cohomology of a model for the topological classifying space BG as discussed in #Connections with topological
cohomology theories above. In practice, this meant using topology to produce the chain complexes used in formal
algebraic definitions. From a module-theoretic point of view this was integrated into the Cartan-Eilenberg theory of
Homological algebra in the early 1950s.
The application in algebraic number theory to class field theory provided theorems valid for general Galois
extensions (not just abelian extensions). The cohomological part of class field theory was axiomatized as the theory
of class formations. In turn, this led to the notion of Galois cohomology and étale cohomology (which builds on it)
(Weibel 1999, p. 822). Some refinements in the theory post-1960 have been made, such as continuous cocycles and
Tate's redefinition, but the basic outlines remain the same. This is a large field, and now basic in the theories of
algebraic groups.
The analogous theory for Lie algebras, called Lie algebra cohomology, was first developed in the late 1940s, by
Chevalley-Eilenberg, and Koszul (Weibel 1999, p. 810). It is formally similar, using the corresponding definition of
invariant for the action of a Lie algebra. It is much applied in representation theory, and is closely connected with
the BRST quantization of theoretical physics.
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Cohomology
In mathematics, specifically in algebraic topology, cohomology is a general term for a sequence of abelian groups
defined from a cochain complex. That is, cohomology is defined as the abstract study of cochains, cocycles, and
coboundaries. Cohomology can be viewed as a method of assigning algebraic invariants to a topological space that
has a more refined algebraic structure than does homology. Cohomology arises from the algebraic dualization of the
construction of homology. In less abstract language, cochains in the fundamental sense should assign 'quantities' to
the chains of homology theory.
From its beginning in topology, this idea became a dominant method in the mathematics of the second half of the
twentieth century; from the initial idea of homology as a topologically invariant relation on chains, the range of
applications of homology and cohomology theories has spread out over geometry and abstract algebra. The
terminology tends to mask the fact that in many applications cohomology, a contravariant theory, is more natural
than homology. At a basic level this has to do with functions and pullbacks in geometric situations: given spaces X
and Y, and some kind of function F on Y, for any mapping ƒ: X → Y composition with ƒ gives rise to a function F o ƒ
on X. Cohomology groups often also have a natural product, the cup product, which gives them a ring structure.
Because of this feature, cohomology is a stronger invariant than homology, as it can differentiate between certain
algebraic objects that homology cannot.

Definition
For a topological space X, the cohomology group Hn(X;G), with coefficents in G, is defined to be the quotient
Ker(δ)/Im(δ) at Cn(X;G) in the cochain complex

Elements in Ker(δ) are cocycles and elements in Im(δ) are coboundaries.

History
Although cohomology is fundamental to modern algebraic topology, its importance was not seen for some 40 years
after the development of homology. The concept of dual cell structure, which Henri Poincaré used in his proof of his
Poincaré duality theorem, contained the germ of the idea of cohomology, but this was not seen until later.
There were various precursors to cohomology. In the mid-1920s, J.W. Alexander and Solomon Lefschetz founded 
the intersection theory of cycles on manifolds. On an n-dimensional manifold M, a p-cycle and a q-cycle with 
nonempty intersection will, if in general position, have intersection a (p+q−n)-cycle. This enables us to define a
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multiplication of homology classes
Hp(M) × Hq(M) → Hp+q-n(M).

Alexander had by 1930 defined a first cochain notion, based on a p-cochain on a space X having relevance to the
small neighborhoods of the diagonal in Xp+1.
In 1931, Georges de Rham related homology and exterior differential forms, proving De Rham's theorem. This result
is now understood to be more naturally interpreted in terms of cohomology.
In 1934, Lev Pontryagin proved the Pontryagin duality theorem; a result on topological groups. This (in rather
special cases) provided an interpretation of Poincaré duality and Alexander duality in terms of group characters.
At a 1935 conference in Moscow, Andrey Kolmogorov and Alexander both introduced cohomology and tried to
construct a cohomology product structure.
In 1936 Norman Steenrod published a paper constructing Čech cohomology by dualizing Čech homology.
From 1936 to 1938, Hassler Whitney and Eduard Čech developed the cup product (making cohomology into a
graded ring) and cap product, and realized that Poincaré duality can be stated in terms of the cap product. Their
theory was still limited to finite cell complexes.
In 1944, Samuel Eilenberg overcame the technical limitations, and gave the modern definition of singular homology
and cohomology.
In 1945, Eilenberg and Steenrod stated the axioms defining a homology or cohomology theory. In their 1952 book,
Foundations of Algebraic Topology, they proved that the existing homology and cohomology theories did indeed
satisfy their axioms.[1]

In 1948 Edwin Spanier, building on work of Alexander and Kolmogorov, developed Alexander-Spanier
cohomology.

Cohomology theories

Eilenberg-Steenrod theories
A cohomology theory is a family of contravariant functors from the category of pairs of topological spaces and
continuous functions (or some subcategory thereof such as the category of CW complexes) to the category of
Abelian groups and group homomorphisms that satisfies the Eilenberg-Steenrod axioms.
Some cohomology theories in this sense are:
• simplicial cohomology
• singular cohomology
• de Rham cohomology
• Čech cohomology
• sheaf cohomology.

Extraordinary cohomology theories
When one axiom (dimension axiom) is relaxed, one obtains the idea of extraordinary cohomology theory or
generalized cohomology theory; this allows theories based on K-theory and cobordism theory. There are others,
coming from stable homotopy theory. In this context, singular homology is referred to as ordinary homology.

An extraordinary cohomology theory is "determined by its values on a point", in the sense that if one has a space 
given by contractible spaces (homotopy equivalent to a point), glued together along contractible spaces, as in a 
simplicial complex, then the cohomology of the space is determined by the cohomology of a point and the 
combinatorics of the patching, and effectively computable. Formally, this is computed by the excision theorem, or 
equivalently the Mayer–Vietoris sequence. Thus the cohomology of a point is a fundamental calculation for any
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extraordinary cohomology theory, though the cohomology of particular spaces is also of interest.

Other cohomology theories
Theories in a broader sense of cohomology include:[2]

• André–Quillen cohomology
• BRST cohomology
• Bonar-Claven cohomology
• Bounded cohomology
• Coherent cohomology
• Crystalline cohomology
• Cyclic cohomology
• Deligne cohomology
• Dirac cohomology
• Étale cohomology
• Flat cohomology
• Galois cohomology
• Gel'fand-Fuks cohomology
• Group cohomology
• Harrison cohomology
• Hochschild cohomology
• Intersection cohomology
• Lie algebra cohomology
• Local cohomology
• Motivic cohomology
• Non-abelian cohomology
• Perverse cohomology
• Quantum cohomology
• Schur cohomology
• Spencer cohomology
• Topological André-Quillen cohomology
• Topological Cyclic cohomology
• Topological Hochschild cohomology
• Γ cohomology

See also
• List of cohomology theories
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Theory of Categories

Category theory

A category with objects X, Y, Z and morphisms f, g

In mathematics, category theory deals in an abstract way with
mathematical structures and relationships between them: it
abstracts from sets and functions to objects linked in diagrams by
morphisms or arrows.

One of the simplest examples of a category (which is a very
important concept in topology) is that of groupoid, defined as a
category whose arrows or morphisms are all invertible. Categories
now appear in most branches of mathematics, some areas of
theoretical computer science where they correspond to types, and
mathematical physics where they can be used to describe vector
spaces. Category theory provides both with a unifying notion and
terminology. Categories were first introduced by Samuel
Eilenberg and Saunders Mac Lane in 1942–45, in connection with
algebraic topology.

Category theory has several faces known not just to specialists, but to other mathematicians. A term dating from the
1940s, "general abstract nonsense", refers to its high level of abstraction, compared to more classical branches of
mathematics. Homological algebra is category theory in its aspect of organising and suggesting manipulations in
abstract algebra. Diagram chasing is a visual method of arguing with abstract "arrows" joined in diagrams. Note that
arrows between categories are called functors, subject to specific defining commutativity conditions; moreover,
categorical diagrams and sequences can be defined as functors (viz. Mitchell, 1965). An arrow between two functors
is a natural transformation when it is subject to certain naturality or commutativity conditions. Both functors and
natural transformations are key concepts in category theory, or the "real engines" of category theory. To paraphrase a
famous sentence of the mathematicians who founded category theory: 'Categories were introduced to define functors,
and functors were introduced to define natural transformations'. Topos theory is a form of abstract sheaf theory, with
geometric origins, and leads to ideas such as pointless topology. A topos can also be considered as a specific type of
category with two additional topos axioms.

Background
The study of categories is an attempt to axiomatically capture what is commonly found in various classes of related
mathematical structures by relating them to the structure-preserving functions between them. A systematic study of
category theory then allows us to prove general results about any of these types of mathematical structures from the
axioms of a category.
Consider the following example. The class Grp of groups consists of all objects having a "group structure". One can
proceed to prove theorems about groups by making logical deductions from the set of axioms. For example, it is
immediately proved from the axioms that the identity element of a group is unique.
Instead of focusing merely on the individual objects (e.g., groups) possessing a given structure, category theory 
emphasizes the morphisms – the structure-preserving mappings – between these objects; by studying these 
morphisms, we are able to learn more about the structure of the objects. In the case of groups, the morphisms are the
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group homomorphisms. A group homomorphism between two groups "preserves the group structure" in a precise
sense – it is a "process" taking one group to another, in a way that carries along information about the structure of
the first group into the second group. The study of group homomorphisms then provides a tool for studying general
properties of groups and consequences of the group axioms.
A similar type of investigation occurs in many mathematical theories, such as the study of continuous maps
(morphisms) between topological spaces in topology (the associated category is called Top), and the study of smooth
functions (morphisms) in manifold theory.
If one axiomatizes relations instead of functions, one obtains the theory of allegories.

Functors
Abstracting again, a category is itself a type of mathematical structure, so we can look for "processes" which
preserve this structure in some sense; such a process is called a functor. A functor associates to every object of one
category an object of another category, and to every morphism in the first category a morphism in the second.
In fact, what we have done is define a category of categories and functors – the objects are categories, and the
morphisms (between categories) are functors.
By studying categories and functors, we are not just studying a class of mathematical structures and the morphisms
between them; we are studying the relationships between various classes of mathematical structures. This is a
fundamental idea, which first surfaced in algebraic topology. Difficult topological questions can be translated into
algebraic questions which are often easier to solve. Basic constructions, such as the fundamental group or
fundamental groupoid [1] of a topological space, can be expressed as fundamental functors [1] to the category of
groupoids in this way, and the concept is pervasive in algebra and its applications.

Natural transformation
Abstracting yet again, constructions are often "naturally related" – a vague notion, at first sight. This leads to the
clarifying concept of natural transformation, a way to "map" one functor to another. Many important constructions in
mathematics can be studied in this context. "Naturality" is a principle, like general covariance in physics, that cuts
deeper than is initially apparent.

Historical notes
In 1942–45, Samuel Eilenberg and Saunders Mac Lane introduced categories, functors, and natural transformations
as part of their work in topology, especially algebraic topology. Their work was an important part of the transition
from intuitive and geometric homology to axiomatic homology theory. Eilenberg and Mac Lane later wrote that their
goal was to understand natural transformations; in order to do that, functors had to be defined, which required
categories.
Stanislaw Ulam, and some writing on his behalf, have claimed that related ideas were current in the late 1930s in
Poland. Eilenberg was Polish, and studied mathematics in Poland in the 1930s. Category theory is also, in some
sense, a continuation of the work of Emmy Noether (one of Mac Lane's teachers) in formalizing abstract processes;
Noether realized that in order to understand a type of mathematical structure, one needs to understand the processes
preserving that structure. In order to achieve this understanding, Eilenberg and Mac Lane proposed an axiomatic
formalization of the relation between structures and the processes preserving them.
The subsequent development of category theory was powered first by the computational needs of homological
algebra, and later by the axiomatic needs of algebraic geometry, the field most resistant to being grounded in either
axiomatic set theory or the Russell-Whitehead view of united foundations. General category theory, an extension of
universal algebra having many new features allowing for semantic flexibility and higher-order logic, came later; it is
now applied throughout mathematics.
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Certain categories called topoi (singular topos) can even serve as an alternative to axiomatic set theory as a
foundation of mathematics. These foundational applications of category theory have been worked out in fair detail as
a basis for, and justification of, constructive mathematics. More recent efforts to introduce undergraduates to
categories as a foundation for mathematics include Lawvere and Rosebrugh (2003) and Lawvere and Schanuel
(1997).
Categorical logic is now a well-defined field based on type theory for intuitionistic logics, with applications in
functional programming and domain theory, where a cartesian closed category is taken as a non-syntactic description
of a lambda calculus. At the very least, category theoretic language clarifies what exactly these related areas have in
common (in some abstract sense).

Categories, objects, and morphisms
A category C consists of the following three mathematical entities:
• A class ob(C), whose elements are called objects;
• A class hom(C), whose elements are called morphisms or maps or arrows. Each morphism f has a unique source

object a and target object b. We write f: a → b, and we say "f is a morphism from a to b". We write hom(a, b) (or
Hom(a, b), or homC(a, b), or Mor(a, b), or C(a, b)) to denote the hom-class of all morphisms from a to b.

• A binary operation , called composition of morphisms, such that for any three objects a, b, and c, we have
hom(a, b) × hom(b, c) → hom(a, c). The composition of f: a → b and g: b → c is written as or gf [2] ,
governed by two axioms:
• Associativity: If f : a → b, g : b → c and h : c → d then , and
• Identity: For every object x, there exists a morphism 1x : x → x called the identity morphism for x, such that for

every morphism f : a → b, we have .
From these axioms, it can be proved that there is exactly one identity morphism for every object. Some authors
deviate from the definition just given by identifying each object with its identity morphism.
Relations among morphisms (such as fg = h) are often depicted using commutative diagrams, with "points" (corners)
representing objects and "arrows" representing morphisms.

Properties of morphisms
Some morphisms have important properties. A morphism f : a → b is:
• a monomorphism (or monic) if fog1 = fog2 implies g1 = g2 for all morphisms g1, g2 : x → a.
• an epimorphism (or epic) if g1of = g2of implies g1 = g2 for all morphisms g1, g2 : b → x.
• an isomorphism if there exists a morphism g : b → a with fog = 1b and gof = 1a.[3]

• an endomorphism if a = b. end(a) denotes the class of endomorphisms of a.
• an automorphism if f is both an endomorphism and an isomorphism. aut(a) denotes the class of automorphisms of

a.
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Functors
Functors are structure-preserving maps between categories. They can be thought of as morphisms in the category of
all (small) categories.
A (covariant) functor F from a category C to a category D, written F:C → D, consists of:
• for each object x in C, an object F(x) in D; and
• for each morphism f : x → y in C, a morphism F(f) : F(x) → F(y),
such that the following two properties hold:
• For every object x in C, F(1x) = 1F(x);
• For all morphisms f : x → y and g : y → z, 
A contravariant functor F: C → D, is like a covariant functor, except that it "turns morphisms around" ("reverses all
the arrows"). More specifically, every morphism f : x → y in C must be assigned to a morphism F(f) : F(y) → F(x) in
D. In other words, a contravariant functor is a covariant functor from the opposite category Cop to D.

Natural transformations and isomorphisms
A natural transformation is a relation between two functors. Functors often describe "natural constructions" and
natural transformations then describe "natural homomorphisms" between two such constructions. Sometimes two
quite different constructions yield "the same" result; this is expressed by a natural isomorphism between the two
functors.
If F and G are (covariant) functors between the categories C and D, then a natural transformation from F to G
associates to every object x in C a morphism ηx : F(x) → G(x) in D such that for every morphism f : x → y in C, we
have ηy o F(f) = G(f) o ηx; this means that the following diagram is commutative:

The two functors F and G are called naturally isomorphic if there exists a natural transformation from F to G such
that ηx is an isomorphism for every object x in C.

Universal constructions, limits, and colimits
Using the language of category theory, many areas of mathematical study can be cast into appropriate categories,
such as the categories of all sets, groups, topologies, and so on. These categories surely have some objects that are
"special" in a certain way, such as the empty set or the product of two topologies, yet in the definition of a category,
objects are considered to be atomic, i.e., we do not know whether an object A is a set, a topology, or any other
abstract concept – hence, the challenge is to define special objects without referring to the internal structure of those
objects. But how can we define the empty set without referring to elements, or the product topology without
referring to open sets?
The solution is to characterize these objects in terms of their relations to other objects, as given by the morphisms of 
the respective categories. Thus, the task is to find universal properties that uniquely determine the objects of interest.
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Indeed, it turns out that numerous important constructions can be described in a purely categorical way. The central
concept which is needed for this purpose is called categorical limit, and can be dualized to yield the notion of a
colimit.

Equivalent categories
It is a natural question to ask: under which conditions can two categories be considered to be "essentially the same",
in the sense that theorems about one category can readily be transformed into theorems about the other category?
The major tool one employs to describe such a situation is called equivalence of categories, which is given by
appropriate functors between two categories. Categorical equivalence has found numerous applications in
mathematics.

Further concepts and results
The definitions of categories and functors provide only the very basics of categorical algebra; additional important
topics are listed below. Although there are strong interrelations between all of these topics, the given order can be
considered as a guideline for further reading.
• The functor category DC has as objects the functors from C to D and as morphisms the natural transformations of

such functors. The Yoneda lemma is one of the most famous basic results of category theory; it describes
representable functors in functor categories.

• Duality: Every statement, theorem, or definition in category theory has a dual which is essentially obtained by
"reversing all the arrows". If one statement is true in a category C then its dual will be true in the dual category
Cop. This duality, which is transparent at the level of category theory, is often obscured in applications and can
lead to surprising relationships.

• Adjoint functors: A functor can be left (or right) adjoint to another functor that maps in the opposite direction.
Such a pair of adjoint functors typically arises from a construction defined by a universal property; this can be
seen as a more abstract and powerful view on universal properties.

Higher-dimensional categories
Many of the above concepts, especially equivalence of categories, adjoint functor pairs, and functor categories, can
be situated into the context of higher-dimensional categories. Briefly, if we consider a morphism between two
objects as a "process taking us from one object to another", then higher-dimensional categories allow us to profitably
generalize this by considering "higher-dimensional processes".
For example, a (strict) 2-category is a category together with "morphisms between morphisms", i.e., processes which
allow us to transform one morphism into another. We can then "compose" these "bimorphisms" both horizontally
and vertically, and we require a 2-dimensional "exchange law" to hold, relating the two composition laws. In this
context, the standard example is Cat, the 2-category of all (small) categories, and in this example, bimorphisms of
morphisms are simply natural transformations of morphisms in the usual sense. Another basic example is to consider
a 2-category with a single object; these are essentially monoidal categories. Bicategories are a weaker notion of
2-dimensional categories in which the composition of morphisms is not strictly associative, but only associative "up
to" an isomorphism.
This process can be extended for all natural numbers n, and these are called n-categories. There is even a notion of
ω-category corresponding to the ordinal number ω.
Higher-dimensional categories are part of the broader mathematical field of higher-dimensional algebra,a concept
introduced by Ronald Brown. For a conversational introduction to these ideas, see John Baez, 'A Tale of
n-categories' (1996). [4]
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See also
• Domain theory
• Enriched category theory
• Glossary of category theory
• Higher category theory
• Higher-dimensional algebra
• Important publications in category theory
• Timeline of category theory and related mathematics
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• The catsters [18]" a Youtube channel about category theory.
• Category Theory [19] on PlanetMath
• Categories, Logic and the Foundations of Physics [20], Webpage dedicated to the use of Categories and Logic in

the Foundations of Physics.
• Interactive Web page [21] which generates examples of categorical constructions in the category of finite sets.
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Category (mathematics)
In mathematics, a category is an algebraic structure consisting of a collection of "objects", linked together by a
collection of "arrows" that have two basic properties: the ability to compose the arrows associatively and the
existence of an identity arrow for each object. Objects and arrows may be abstract entities of any kind. Categories
generalize monoids, groupoids and preorders. In addition, the notion of category provides a fundamental and abstract
way to describe mathematical entities and their relationships. This is the central idea of category theory, a branch of
mathematics which seeks to generalize all of mathematics in terms of objects and arrows, independent of what the
objects and arrows represent. Virtually every branch of modern mathematics can be described in terms of categories,
and doing so often reveals deep insights and similarities between seemingly different areas of mathematics. For more
extensive motivational background and historical notes, see category theory and the list of category theory topics.
Two categories are the same if they have the same collection of objects, the same collection of arrows, and the same
associative method of composing any pair of arrows. Two categories may also be considered "equivalent" for
purposes of category theory, even if they are not precisely the same. Many well-known categories are conventionally
identified by a short capitalized word or abbreviation in bold or italics such as Set (category of sets and set
functions), Ring (category of rings and ring homomorphisms), or Top (category of topological spaces and
continuous maps).

Definition
A category C consists of
• a class ob(C) of objects:
• a class hom(C) of morphisms, or arrows, or maps, between the objects. Each morphism f has a unique source

object a and target object b where a and b are in ob(C). We write f: a → b, and we say "f is a morphism from a to
b". We write hom(a, b) (or homC(a, b) when there may be confusion about to which category hom(a, b) refers) to
denote the hom-class of all morphisms from a to b. (Some authors write Mor(a, b) or simply C(a, b) instead.)

• for every three objects a, b and c, a binary operation hom(a, b) × hom(b, c) → hom(a, c) called composition of
morphisms; the composition of f : a → b and g : b → c is written as g o f or gf. (Some authors write fg or f;g.)

such that the following axioms hold:
• (associativity) if f : a → b, g : b → c and h : c → d then h o (g o f) = (h o g) o f, and
• (identity) for every object x, there exists a morphism 1x : x → x called the identity morphism for x, such that for

every morphism f : a → b, we have 1b o f = f = f o 1a.
From these axioms, one can prove that there is exactly one identity morphism for every object. Some authors use a
slight variation of the definition in which each object is identified with the corresponding identity morphism.
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Small and large categories
A category C is called small if both ob(C) and hom(C) are actually sets and not proper classes, and large otherwise.
A locally small category is a category such that for all objects a and b, the hom-class hom(a, b) is a set, called a
homset. Many important categories in mathematics (such as the category of sets), although not small, are at least
locally small.

Examples
The class of all sets together with all functions between sets, where composition is the usual function composition,
forms a large category, Set. It is the most basic and the most commonly used category in mathematics. The category
Rel consists of all sets, with binary relations as morphisms. Abstracting from relations instead of functions yields
allegories instead of categories.
Any class can be viewed as a category whose only morphisms are the identity morphisms. Such categories are called
discrete. For any given set I, the discrete category on I is the small category that has the elements of I as objects and
only the identity morphisms as morphisms. Discrete categories are the simplest kind of category.
Any preordered set (P, ≤) forms a small category, where the objects are the members of P, the morphisms are arrows
pointing from x to y when x ≤ y. Between any two objects there can be at most one morphism. The existence of
identity morphisms and the composability of the morphisms are guaranteed by the reflexivity and the transitivity of
the preorder. By the same argument, any partially ordered set and any equivalence relation can be seen as a small
category. Any ordinal number can be seen as a category when viewed as a ordered set.
Any monoid (any algebraic structure with a single associative binary operation and an identity element) forms a
small category with a single object x. (Here, x is any fixed set.) The morphisms from x to x are precisely the elements
of the monoid, the identity morphism of x is the identity of the monoid, and the categorical composition of
morphisms is given by the monoid operation. Several definitions and theorems about monoids may be generalized
for categories.
Any group can be seen as a category with a single object in which every morphism is invertible (for every morphism
f there is a morphism g that is both left and right inverse to f under composition) by viewing the group as acting on
itself by left multiplication. A morphism which is invertible in this sense is called an isomorphism.
A groupoid is a category in which every morphism is an isomorphism. Groupoids are generalizations of groups,
group actions and equivalence relations.

A directed graph.

Any directed graph generates a small category: the objects are the vertices of the
graph, and the morphisms are the paths in the graph (augmented with loops as
needed) where composition of morphisms is concatenation of paths. Such a
category is called the free category generated by the graph.

The class of all preordered sets with monotonic functions as morphisms forms a
category, Ord. It is a concrete category, i.e. a category obtained by adding some
type of structure onto Set, and requiring that morphisms are functions that respect
this added structure.

The class of all groups with group homomorphisms as morphisms and function
composition as the composition operation forms a large category, Grp. Like Ord, Grp is a concrete category. The
category Ab, consisting of all abelian groups and their group homomorphisms, is a full subcategory of Grp, and the
prototype of an abelian category. Other examples of concrete categories are given by the following table.
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Category Objects Morphisms

Mag magmas magma homomorphisms

Ring rings ring homomorphisms

R-Mod R-Modules, where R is a Ring module homomorphisms

VectK vector spaces over the field K K-linear maps

Top topological spaces continuous functions

Met metric spaces short maps

Uni uniform spaces uniformly continuous functions

Manp smooth manifolds p-times continuously differentiable maps

Fiber bundles with bundle maps between them form a concrete category.
The category Cat consists of all small categories, with functors between them as morphisms.

Construction of new categories

Dual category
Any category C can itself be considered as a new category in a different way: the objects are the same as those in the
original category but the arrows are those of the original category reversed. This is called the dual or opposite
category and is denoted Cop.

Product categories
If C and D are categories, one can form the product category C × D: the objects are pairs consisting of one object
from C and one from D, and the morphisms are also pairs, consisting of one morphism in C and one in D. Such pairs
can be composed componentwise.

Types of morphisms
A morphism f : a → b is called
• a monomorphism (or monic) if fg1 = fg2 implies g1 = g2 for all morphisms g1, g2 : x → a.
• an epimorphism (or epic) if g1f = g2f implies g1 = g2 for all morphisms g1, g2 : b → x.
• a bimorphism if it is both a monomorphism and an epimorphism.
• a retraction if it has a right inverse, i.e. if there exists a morphism g : b → a with fg = 1b.
• a section if it has a left inverse, i.e. if there exists a morphism g : b → a with gf = 1a.
• an isomorphism if it has an inverse, i.e. if there exists a morphism g : b → a with fg = 1b and gf = 1a.
• an endomorphism if a = b. The class of endomorphisms of a is denoted end(a).
• an automorphism if f is both an endomorphism and an isomorphism. The class of automorphisms of a is denoted

aut(a).
Every retraction is an epimorphism. Every section is a monomorphism. The following three statements are
equivalent:
• f is a monomorphism and a retraction;
• f is an epimorphism and a section;
• f is an isomorphism.
Relations among morphisms (such as fg = h) can most conveniently be represented with commutative diagrams,
where the objects are represented as points and the morphisms as arrows.
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Types of categories
• In many categories, e.g. Ab or VectK, the hom-sets hom(a, b) are not just sets but actually abelian groups, and the

composition of morphisms is compatible with these group structures; i.e. is bilinear. Such a category is called
preadditive. If, furthermore, the category has all finite products and coproducts, it is called an additive category. If
all morphisms have a kernel and a cokernel, and all epimorphisms are cokernels and all monomorphisms are
kernels, then we speak of an abelian category. A typical example of an abelian category is the category of abelian
groups.

• A category is called complete if all limits exist in it. The categories of sets, abelian groups and topological spaces
are complete.

• A category is called cartesian closed if it has finite direct products and a morphism defined on a finite product can
always be represented by a morphism defined on just one of the factors. Examples include Set and CPO, the
category of complete partial orders with Scott-continuous functions.

• A topos is a certain type of cartesian closed category in which all of mathematics can be formulated (just like
classically all of mathematics is formulated in the category of sets). A topos can also be used to represent a logical
theory.

See also
• Enriched category
• Higher category theory
• Table of mathematical symbols
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External links
• Chris Hillman, Categorical primer [14], formal introduction to Category Theory.
• Homepage of the Categories mailing list [17], with extensive list of resources
• Category Theory section of Alexandre Stefanov's list of free online mathematics resources [3]
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Morphism
In mathematics, a morphism is an abstraction derived from structure-preserving mappings between two
mathematical structures.
The study of morphisms and of the structures (called objects) over which they are defined, is central to category
theory. Much of the terminology of morphisms, as well as the intuition underlying them, comes from concrete
categories, where the objects are simply sets with some additional structure, and morphisms are functions preserving
this structure. Nevertheless, morphisms are not necessarily functions, and objects over which morphisms are defined
are not necessarily sets. Instead, a morphism is often thought of as an arrow linking an object called the domain to
another object called the codomain. Hence morphisms do not so much map sets into sets, as embody a relationship
between some posited domain and codomain.
The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms are functions; in
linear algebra, linear transformations; in group theory, group homomorphisms; in topology, continuous functions; in
universal algebra, homomorphisms.

Definition
A category C consists of two classes, one of objects and the other of morphisms.
There are two operations which are defined on every morphism, the domain (or source) and the codomain (or
target).
If a morphism f has domain X and codomain Y, we write f : X → Y. Thus a morphism is represented by an arrow
from its domain to its codomain. The collection of all morphisms from X to Y is denoted homC(X,Y) or simply
hom(X, Y) and called the hom-set between X and Y. Some authors write MorC(X,Y) or Mor(X, Y). Note that the term
hom-set is a bit of a misnomer as the collection of morphisms is not required to be a set.
For every three objects X, Y, and Z, there exists a binary operation hom(X, Y) × hom(Y, Z) → hom(X, Z) called
composition. The composite of f : X → Y and g : Y → Z is written g o f or gf. The composition of morphisms is often
represented by a commutative diagram. For example,
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Morphisms satisfy two axioms:
• Identity: for every object X, there exists a morphism idX : X → X called the identity morphism on X, such that for

every morphism f : A → B we have idB o f = f = f o idA.
• Associativity: h o (g o f) = (h o g) o f whenever the operations are defined.
When C is a concrete category, the identity morphism is just the identity function, and composition is just the
ordinary composition of functions. Associativity then follows, because the composition of functions is associative.
Note that the domain and codomain are in fact part of the information determining a morphism. For example, in the
category of sets, where morphisms are functions, two functions may be identical as sets of ordered pairs (may have
the same range), while having different codomains. The two functions are distinct from the viewpoint of category
theory. Thus many authors require that the hom-classes hom(X, Y) be disjoint. In practice, this is not a problem
because if this disjointness does not hold, it can be assured by appending the domain and codomain to the
morphisms, (say, as the second and third components of an ordered triple).

Alternate definition using a "null morphism"
Since there is exactly one identity morphism idX for each object X, the class of objects can be dropped from the
definition of a category, and replaced with the subclass of homC consisting of the identity morphisms. In this
formulation, a category C consists of a non-empty class homC with one additional structure: the composition
function, a binary operation o: homC × homC → homC. Composition is defined for all pairs of morphisms (elements
of homC), with the help of a null morphism (or just null) ø in homC, which obeys fø = øf = ø for every morphism f.
The class C0 of identity morphisms (or just identities) consists of those elements X≠ø of homC such that, for every g
in homC, . Up to isomorphism, the only category with no identities is the null category 0 = {ø}
(equipped with the obvious composition function).
To form a category, the composition operation must be associative and must also split over the identity morphisms,
meaning that:
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• For every f≠ø in homC, fX must be non-null (and equal to f) for exactly one X in C0 (the domain of f).
• For every g≠ø in homC, Yg must be non-null (and equal to g) for exactly one Y in C0 (the codomain of g).
• Consequently, domain(f) = codomain(g) is a necessary condition for fg to be non-null. This must also be a

sufficient condition.

Thus the class homC of morphisms is the union of the non-overlapping classes . The domain
homC × homC of the composition operation may be divided into the null sector and the collection of
non-null sectors homC(X,Y) × homC(Y,Z).
The two definitions of a category are equivalent, but the formulation with the "null morphism" has several
advantages:
• We can identify the category with its class of morphisms (including the null morphism), and write C for both.

Thus a category is simply a non-empty class C, equipped with an associative binary operation with null ø, which
splits over a subclass C0 of identities.

• The composition operation is a total function on C × C; instead of splitting C into hom-classes and enumerating
cases in which composition is and isn't defined, one can usually make simpler statements about the preimage of ø.

• Statements about the objects of the category reduce to statements about the subclass C0 of identity morphisms in
homC, and can often be subsumed into facts about identity morphisms. For instance, a (total) functor F from
category C to category D is just a function that preserves the composition operation (including its null and its
subclass of identities). The statement that F preserves the identity subclass implies that ; the
mapping of objects given in the usual definition of a functor is recovered as the restriction of F to C0.

• We obtain a null category 0 = {ø}, distinct from the trivial category 1 = {1, ø}. (The trivial category is equipped
with the only composition operation under which 1 is not equivalent to ø.) This null category serves as a zero
object in the category of small categories Cat, if we take the morphisms of Cat to include all partial functors:
maps F: C → D, which preserve the composition operation (and its null) and map C0 into . (Note
that "partial functor" is usually used in a different sense, analogous to the use of partial function to describe a
function of several variables in which some have already been fixed.)

This version of the category of small categories is not the same as the usual definition of Cat, in which the class of
morphisms is limited to the total functors, and thus the empty category ∅ = {} is an initial object but the terminal
object is 1 = {1}. Statements about functors can be clearly divided into those that apply also to partial functors and
those that apply only to total functors (those with kernel 0). Similarly, one can define a version of the category of
sets in which the morphisms are the partial functions and the null set is a zero object; the total functions are those
partial functions whose kernel is the null set. These examples illustrate that the essential property of a category is not
its class of objects, nor even its class of morphisms, but its composition operation. This operation is usually implicit
in the name of the class of morphisms; thus it would perhaps be better to name a category after its morphisms (e. g.,
the "category of total functions" vs. the "category of partial functions") rather than after its objects (the "category of
sets").

Some specific morphisms
• Monomorphism: f : X → Y is called a monomorphism if f o g1 = f o g2 implies g1 = g2 for all morphisms g1, g2 : Z

→ X. It is also called a mono or a monic.
• The morphism f has a left inverse if there is a morphism g:Y → X such that g o f = idX. The left inverse g is

also called a retraction of f. Morphisms with left inverses are always monomorphisms, but the converse is not
always true in every category; a monomorphism may fail to have a left-inverse.

• A split monomorphism h : X → Y is a monomorphism having a left inverse g : Y → X, so that g o h = idX.
Thus h o g : Y → Y is idempotent, so that (h o g)2 = h o g.

• In concrete categories, a function that has left inverse is injective. Thus in concrete categories, 
monomorphisms are often, but not always, injective. The condition of being an injection is stronger than that
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of being a monomorphism, but weaker than that of being a split monomorphism.
• Epimorphism: Dually, f : X → Y is called an epimorphism if g1 o f = g2 o f implies g1 = g2 for all morphisms g1,

g2 : Y → Z. It is also called an epi or an epic.
• The morphism f has a right-inverse if there is a morphism g : Y → X such that f o g = idY. The right inverse g

is also called a section of f. Morphisms having a right inverse are always epimorphisms, but the converse is not
always true in every category, as an epimorphism may fail to have a right inverse.

• A split epimorphism is an epimorphism having a right inverse. Note that if a monomorphism f splits with
left-inverse g, then g is a split epimorphism with right-inverse f.

• In concrete categories, a function that has a right inverse is surjective. Thus in concrete categories,
epimorphisms are often, but not always, surjective. The condition of being a surjection is stronger than that of
being an epimorphism, but weaker than that of being a split epimorphism. In the category of sets, every
surjection has a section, a result equivalent to the axiom of choice.

• A bimorphism is a morphism that is both an epimorphism and a monomorphism.
• Isomorphism: f : X → Y is called an isomorphism if there exists a morphism g : Y → X such that f o g = idY and g

o f = idX. If a morphism has both left-inverse and right-inverse, then the two inverses are equal, so f is an
isomorphism, and g is called simply the inverse of f. Inverse morphisms, if they exist, are unique. The inverse g is
also an isomorphism with inverse f. Two objects with an isomorphism between them are said to be isomorphic or
equivalent. Note that while every isomorphism is a bimorphism, a bimorphism is not necessarily an isomorphism.
For example, in the category of commutative rings the inclusion Z → Q is a bimorphism, which is not an
isomorphism. However, any morphism that is both an epimorphism and a split monomorphism, or both a
monomorphism and a split epimorphism, must be an isomorphism. A category, such as Set, in which every
bimorphism is an isomorphism is known as a balanced category.

• Endomorphism: f : X → X is an endomorphism of X. A split endomorphism is an idempotent endomorphism f
if f admits a decomposition f = h o g with g o h = id. In particular, the Karoubi envelope of a category splits every
idempotent morphism.

• An automorphism is a morphism that is both an endomorphism and an isomorphism.

Examples
• In the concrete categories studied in universal algebra (groups, rings, modules, etc.), morphisms are called

homomorphisms. Likewise, the notions of automorphism, endomorphism, epimorphism, homeomorphism,
isomorphism, and monomorphism all find use in universal algebra.

• In the category of topological spaces, morphisms are continuous functions and isomorphisms are called
homeomorphisms.

• In the category of smooth manifolds, morphisms are smooth functions and isomorphisms are called
diffeomorphisms.

• In the category of small categories, functors can be thought of as morphisms.
• In a functor category, the morphisms are natural transformations.
For more examples, see the entry category theory.

http://en.wikipedia.org/w/index.php?title=Epimorphism
http://en.wikipedia.org/w/index.php?title=Epimorphism
http://en.wikipedia.org/w/index.php?title=Concrete_categories
http://en.wikipedia.org/w/index.php?title=Surjective
http://en.wikipedia.org/w/index.php?title=Category_of_sets
http://en.wikipedia.org/w/index.php?title=Axiom_of_choice
http://en.wikipedia.org/w/index.php?title=Isomorphic
http://en.wikipedia.org/w/index.php?title=Commutative_ring
http://en.wikipedia.org/w/index.php?title=Endomorphism
http://en.wikipedia.org/w/index.php?title=Endomorphism
http://en.wikipedia.org/w/index.php?title=Karoubi_envelope
http://en.wikipedia.org/w/index.php?title=Automorphism
http://en.wikipedia.org/w/index.php?title=Concrete_categories
http://en.wikipedia.org/w/index.php?title=Universal_algebra
http://en.wikipedia.org/w/index.php?title=Ring_%28algebra%29
http://en.wikipedia.org/w/index.php?title=Module_%28mathematics%29
http://en.wikipedia.org/w/index.php?title=Homomorphism
http://en.wikipedia.org/w/index.php?title=Homeomorphism
http://en.wikipedia.org/w/index.php?title=Category_of_topological_spaces
http://en.wikipedia.org/w/index.php?title=Continuous_function
http://en.wikipedia.org/w/index.php?title=Homeomorphism
http://en.wikipedia.org/w/index.php?title=Smooth_manifold
http://en.wikipedia.org/w/index.php?title=Smooth_function
http://en.wikipedia.org/w/index.php?title=Diffeomorphism
http://en.wikipedia.org/w/index.php?title=Small_category


Morphism 153

See also
• anamorphism
• automorphism
• catamorphism
• category theory
• concrete category
• diffeomorphism
• endomorphism
• epimorphism
• holomorphic function
• homeomorphism
• homomorphism
• hylomorphism
• isomorphism
• monomorphism
• normal morphism
• paramorphism
• zero morphism

External links
• Category [1] on PlanetMath
• TypesOfMorphisms [2] on PlanetMath
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Isomorphism
In abstract algebra, an isomorphism (Greek: ἴσος isos "equal", and μορφή morphe "shape") is a bijective map f such
that both f and its inverse f −1 are homomorphisms, i.e., structure-preserving mappings. In the more general setting of
category theory, an isomorphism is a morphism f: X → Y in a category for which there exists an "inverse" f −1: Y →
X, with the property that both f −1f = idX and f f −1 = idY.
Informally, an isomorphism is a kind of mapping between objects, which shows a relationship between two
properties or operations. If there exists an isomorphism between two structures, we call the two structures
isomorphic. In a certain sense, isomorphic structures are structurally identical, if you choose to ignore
finer-grained differences that may arise from how they are defined.

Purpose
Isomorphisms are studied in mathematics in order to extend insights from one phenomenon to others: if two objects
are isomorphic, then any property which is preserved by an isomorphism and which is true of one of the objects, is
also true of the other. If an isomorphism can be found from a relatively unknown part of mathematics into some well
studied division of mathematics, where many theorems are already proved, and many methods are already available
to find answers, then the function can be used to map whole problems out of unfamiliar territory over to "solid
ground" where the problem is easier to understand and work with.

Practical example
The following are examples of isomorphisms from ordinary algebra.
• Consider the logarithm function: For any fixed base b, the logarithm function logb maps from the positive real

numbers onto the real numbers ; formally:

This mapping is one-to-one and onto, that is, it is a bijection from the domain to the codomain of the logarithm
function. In addition to being an isomorphism of sets, the logarithm function also preserves certain operations.
Specifically, consider the group of positive real numbers under ordinary multiplication. The logarithm
function obeys the following identity:

But the real numbers under addition also form a group. So the logarithm function is in fact a group isomorphism
from the group to the group .

Logarithms can therefore be used to simplify multiplication of real numbers. By working with logarithms,
multiplication of positive real numbers is replaced by addition of logs. This way it is possible to multiply real
numbers using a ruler and a table of logarithms, or using a slide rule with a logarithmic scale.

• Consider the group Z6, the numbers from 0 to 5 with addition modulo 6. Also consider the group Z2 × Z3, the
ordered pairs where the x coordinates can be 0 or 1, and the y coordinates can be 0, 1, or 2, where addition in
the x-coordinate is modulo 2 and addition in the y-coordinate is modulo 3. These structures are isomorphic
under addition, if you identify them using the following scheme:
(0,0) → 0
(1,1) → 1
(0,2) → 2
(1,0) → 3
(0,1) → 4
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(1,2) → 5
or in general (a,b) → ( 3a + 4 b ) mod 6. For example note that (1,1) + (1,0) = (0,1) which translates in the
other system as 1 + 3 = 4. Even though these two groups "look" different in that the sets contain different
elements, they are indeed isomorphic: their structures are exactly the same. More generally, the direct product
of two cyclic groups Zn and Zm is cyclic if and only if n and m are coprime.

Abstract examples

A relation-preserving isomorphism
If one object consists of a set X with a binary relation R and the other object consists of a set Y with a binary relation
S then an isomorphism from X to Y is a bijective function f : X → Y such that

f(u) S f(v) if and only if u R v.
S is reflexive, irreflexive, symmetric, antisymmetric, asymmetric, transitive, total, trichotomous, a partial order, total
order, strict weak order, total preorder (weak order), an equivalence relation, or a relation with any other special
properties, if and only if R is.
For example, R is an ordering ≤ and S an ordering , then an isomorphism from X to Y is a bijective function
f : X → Y such that

if and only if u ≤ v.
Such an isomorphism is called an order isomorphism or (less commonly) an isotone isomorphism.
If X = Y we have a relation-preserving automorphism.

An operation-preserving isomorphism

Suppose that on these sets X and Y, there are two binary operations and which happen to constitute the groups
(X, ) and (Y, ). Note that the operators operate on elements from the domain and range, respectively, of the
"one-to-one" and "onto" function f. There is an isomorphism from X to Y if the bijective function f : X → Y happens
to produce results, that sets up a correspondence between the operator and the operator .

for all u, v in X.

Applications
In abstract algebra, two basic isomorphisms are defined:
• Group isomorphism, an isomorphism between groups
• Ring isomorphism, an isomorphism between rings. (Note that isomorphisms between fields are actually ring

isomorphisms)
Just as the automorphisms of an algebraic structure form a group, the isomorphisms between two algebras sharing a
common structure form a heap. Letting a particular isomorphism identify the two structures turns this heap into a
group.
In mathematical analysis, the Laplace transform is an isomorphism mapping hard differential equations into easier
algebraic equations.
In category theory, Iet the category C consist of two classes, one of objects and the other of morphisms. Then a 
general definition of isomorphism that covers the previous and many other cases is: an isomorphism is a morphism f 
: a → b that has an inverse, i.e. there exists a morphism g : b → a with fg = 1b and gf = 1a. For example, a bijective 
linear map is an isomorphism between vector spaces, and a bijective continuous function whose inverse is also

http://en.wikipedia.org/w/index.php?title=Direct_product
http://en.wikipedia.org/w/index.php?title=Cyclic_group
http://en.wikipedia.org/w/index.php?title=Coprime
http://en.wikipedia.org/w/index.php?title=Binary_relation
http://en.wikipedia.org/w/index.php?title=If_and_only_if
http://en.wikipedia.org/w/index.php?title=Reflexive_relation
http://en.wikipedia.org/w/index.php?title=Irreflexive_relation
http://en.wikipedia.org/w/index.php?title=Symmetric_relation
http://en.wikipedia.org/w/index.php?title=Antisymmetric_relation
http://en.wikipedia.org/w/index.php?title=Asymmetric_relation
http://en.wikipedia.org/w/index.php?title=Transitive_relation
http://en.wikipedia.org/w/index.php?title=Total_relation
http://en.wikipedia.org/w/index.php?title=Binary_relation%23Relations_over_a_set
http://en.wikipedia.org/w/index.php?title=Partial_order
http://en.wikipedia.org/w/index.php?title=Total_order
http://en.wikipedia.org/w/index.php?title=Total_order
http://en.wikipedia.org/w/index.php?title=Strict_weak_order
http://en.wikipedia.org/w/index.php?title=Strict_weak_order%23Total_preorders
http://en.wikipedia.org/w/index.php?title=Equivalence_relation
http://en.wikipedia.org/w/index.php?title=Order_theory
http://en.wikipedia.org/w/index.php?title=Order_isomorphism
http://en.wikipedia.org/w/index.php?title=Automorphism
http://en.wikipedia.org/w/index.php?title=Domain_%28mathematics%29
http://en.wikipedia.org/w/index.php?title=Range_%28mathematics%29
http://en.wikipedia.org/w/index.php?title=Bijective
http://en.wikipedia.org/w/index.php?title=Group_isomorphism
http://en.wikipedia.org/w/index.php?title=Ring_isomorphism
http://en.wikipedia.org/w/index.php?title=Ring_%28mathematics%29
http://en.wikipedia.org/w/index.php?title=Automorphism
http://en.wikipedia.org/w/index.php?title=Algebraic_structure
http://en.wikipedia.org/w/index.php?title=Heap_%28mathematics%29
http://en.wikipedia.org/w/index.php?title=Mathematical_analysis
http://en.wikipedia.org/w/index.php?title=Laplace_transform
http://en.wikipedia.org/w/index.php?title=Differential_equations
http://en.wikipedia.org/w/index.php?title=Algebra
http://en.wikipedia.org/w/index.php?title=Class_%28set_theory%29
http://en.wikipedia.org/w/index.php?title=Morphisms
http://en.wikipedia.org/w/index.php?title=Linear_map
http://en.wikipedia.org/w/index.php?title=Continuous_function


Isomorphism 156

continuous is an isomorphism between topological spaces, called a homeomorphism.
In graph theory, an isomorphism between two graphs G and H is a bijective map f from the vertices of G to the
vertices of H that preserves the "edge structure" in the sense that there is an edge from vertex u to vertex v in G if
and only if there is an edge from f(u) to f(v) in H. See graph isomorphism.
In early theories of logical atomism, the formal relationship between facts and true propositions was theorized by
Bertrand Russell and Ludwig Wittgenstein to be isomorphic. An example of this line of thinking can be found in
Russell's Introduction to Mathematical Philosophy.
In cybernetics, the Good Regulator or Conant-Ashby theorem is stated "Every Good Regulator of a system must be a
model of that system". Whether regulated or self-regulating an isomorphism is required between regulator part and
the processing part of the system.

Relation with equality
In certain areas of mathematics, notably category theory, it is very valuable to distinguish between equality on the
one hand and isomorphism on the other.[1] Equality is when two objects are "literally the same", while isomorphism
is when two objects "can be made to correspond via an isomorphism". For example, the sets

and are equal – they are two different presentations (one in set
builder notation, one by an enumeration) of the same subset of the integers. By contrast, the sets and

are not equal – the first has elements that are letters, while the second has elements that are numbers.
These are isomorphic as sets, since finite sets are determined up to isomorphism by their cardinality (number of
elements) and these both have three elements, but there are many choices of isomorphism – one isomorphism is

while another is and no one isomorphism is better than
any other.[2] [3] Thus one cannot identify these two sets: one can choose an isomorphism between them, but any
statement that identifies these two sets depends on the choice of isomorphism.
A motivating example of this distinction is the distinction between a finite-dimensional vector space V and its dual
space These spaces have the same dimension, and thus are isomorphic as abstract vector spaces (since
algebraically, vector spaces are classified by dimension, just as sets are classified by cardinality), but there is no
"natural" choice of isomorphism If one chooses a basis for V, then this yields an isomorphism; this
corresponds to transforming a column vector (element of V) to a row vector (element of ) by transpose, but a
different choice of basis gives a different isomorphism: the isomorphism "depends on the choice of basis". More
subtly, there is a map from a vector space to its double dual that does not depend on the choice of basis.
This leads to a third notion, that of a natural isomorphism: while and are different sets (the first consists of
vectors v ( ), while the latter consists of functions from the dual space to the field K of scalars (

)), there is a "natural" choice of isomorphism between them. This intuitive notion of "an
isomorphism that does not depend on an arbitrary choice" is formalized in the notion of a natural transformation:
briefly, that one may consistently identify, or more generally map from, a vector space to its double dual, across all
vector spaces: one may map and and so forth for all vector space in a consistent way.
Formalizing this intuition is a motivation for the development of category theory.
If one wishes to draw a distinction between an arbitrary isomorphism (one that depends on a choice) and a natural
isomorphism (one that can be done consistently), one may write for an unnatural isomorphism and for a
natural isomorphism, as in and this convention is not universally followed, and authors who
wish to distinguish between unnatural isomorphisms and natural isomorphisms will generally explicitly state the
distinction.
Generally, saying that two objects are equal is reserved for when there is a notion of a larger (ambient) space which 
these objects live within. Most often, one speaks of equality of two subsets of a given set (as in the integer set 
example above), but not of two objects abstractly presented. For example, the 2-dimensional unit sphere in 
3-dimensional space and the Riemann sphere  – which can be
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presented as the one-point compactification of the complex plane  or as the complex projective line (a
quotient space)  – are three different descriptions for a mathematical object, all of
which are isomorphic, but which are not equal because they are not all subsets of a single space: the first is a subset
of the second is [4] plus an additional point, and the third is a subquotient of 

See also
• Epimorphism
• Heap (mathematics)
• Isometry
• Isomorphism class
• Monomorphism
• Morphism

References
[1] (Mazur 2007)
[2] The careful reader may note that A, B, C have a conventional order, namely alphabetical order, and similarly 1, 2, 3 have the order from the

integers, and thus in some sense there is a "natural" isomorphism, namely This intuition can be formalized
by saying that any two finite ordered sets of the same cardinality have a natural isomorphism, by sending the least element of the first to the
least element of the second, the least element of what remains in the first to the least element of what remains in the second, and so forth, but
conversely two finite unordered sets are not naturally isomorphic because there is more than one choice of map – except if the cardinality is 0
or 1, where there is a unique choice.

[3] In fact, there are precisely different isomorphism between two sets with three elements. This is equal to the number of
automorphisms of a given three element set (the symmetric group on three letters), and more generally one has that the set of isomorphisms
between two objects, denoted is a torsor for the automorphism group of A, and also a torsor for the

automorphism group of B. In fact, automorphisms of an object are a key reason to be concerned with the distinction between isomorphism and
equality, as demonstrated in the effect of change of basis on the identification of a vector space with its dual or with its double dual, as
elaborated in the sequel.

[4] Being precise, the identification of the complex numbers with the real plane, depends on a choice of 
one can just as easily choose which yields a different identification – formally, complex conjugation is an automorphism – but in

practice one often assumes that one has made such an identification.
• Mazur, Barry (12 June 2007), When is one thing equal to some other thing? (http:/ / www. math. harvard. edu/

~mazur/ preprints/ when_is_one. pdf)

External links
• Isomorphism (http:/ / planetmath. org/ ?op=getobj& amp;from=objects& amp;id=1936) on PlanetMath
• Weisstein, Eric W., " Isomorphism (http:/ / mathworld. wolfram. com/ Isomorphism. html)" from MathWorld.
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Functor
In category theory, a branch of mathematics, a functor is a special type of mapping between categories. Functors can
be thought of as homomorphisms between categories, or morphisms in the category of small categories.
Functors were first considered in algebraic topology, where algebraic objects (like the fundamental group) are
associated to topological spaces, and algebraic homomorphisms are associated to continuous maps. Nowadays,
functors are used throughout modern mathematics to relate various categories. The word "functor" was borrowed by
mathematicians from the philosopher Rudolf Carnap [Mac Lane, p. 30]. Carnap used the term "functor" to stand in
relation to functions analogously as predicates stand in relation to properties. [See Carnap, The Logical Syntax of
Language, p.13-14, 1937, Routledge & Kegan Paul.] For Carnap then, unlike modern category theory's use of the
term, a functor is a linguistic item. For category theorists, a functor is a particular kind of function.

Definition
Let C and D be categories. A functor F from C to D is a mapping that

• associates to each object an object ,
• associates to each morphism a morphism 
such that the following two conditions hold:

• for every object 
• for all morphisms and 
That is, functors must preserve identity morphisms and composition of morphisms.

Covariance and contravariance
There are many constructions in mathematics which would be functors but for the fact that they "turn morphisms
around" and "reverse composition". We then define a contravariant functor F from C to D as a mapping that

• associates to each object an object 
• associates to each morphism a morphism such that

• for every object ,
• for all morphisms and 

Note that contravariant functors reverse the direction of composition.
Ordinary functors are also called covariant functors in order to distinguish them from contravariant ones. Note that
one can also define a contravariant functor as a covariant functor on the dual category . Some authors prefer to
write all expressions covariantly. That is, instead of saying is a contravariant functor, they simply
write (or sometimes ) and call it a functor.
Contravariant functors are also occasionally called cofunctors.
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Examples
Constant functor: The functor C → D which maps every object of C to a fixed object X in D and every morphism
in C to the identity morphism on X. Such a functor is called a constant or selection functor.
Endofunctor: A functor that maps a category to itself.
Diagonal functor: The diagonal functor is defined as the functor from D to the functor category DC which sends
each object in D to the constant functor at that object.
Limit functor: For a fixed index category J, if every functor J→C has a limit (for instance if C is complete), then the
limit functor CJ→C assigns to each functor its limit. The existence of this functor can be proved by realizing that it is
the right-adjoint to the diagonal functor and invoking the Freyd adjoint functor theorem. This requires a suitable
version of the axiom of choice. Similar remarks apply to the colimit functor (which is covariant).

Power sets: The power set functor P : Set → Set maps each set to its power set and each function to
the map which sends to its image . One can also consider the contravariant power set functor
which sends to the map which sends to its inverse image 
Dual vector space: The map which assigns to every vector space its dual space and to every linear map its dual or
transpose is a contravariant functor from the category of all vector spaces over a fixed field to itself.
Fundamental group: Consider the category of pointed topological spaces, i.e. topological spaces with distinguished
points. The objects are pairs (X, x0), where X is a topological space and x0 is a point in X. A morphism from (X, x0) to
(Y, y0) is given by a continuous map f : X → Y with f(x0) = y0.
To every topological space X with distinguished point x0, one can define the fundamental group based at x0, denoted
π1(X, x0). This is the group of homotopy classes of loops based at x0. If f : X → Y morphism of pointed spaces, then
every loop in X with base point x0 can be composed with f to yield a loop in Y with base point y0. This operation is
compatible with the homotopy equivalence relation and the composition of loops, and we get a group
homomorphism from π(X, x0) to π(Y, y0). We thus obtain a functor from the category of pointed topological spaces
to the category of groups.
In the category of topological spaces (without distinguished point), one considers homotopy classes of generic
curves, but they cannot be composed unless they share an endpoint. Thus one has the fundamental groupoid instead
of the fundamental group, and this construction is functorial.
Algebra of continuous functions: a contravariant functor from the category of topological spaces (with continuous
maps as morphisms) to the category of real associative algebras is given by assigning to every topological space X
the algebra C(X) of all real-valued continuous functions on that space. Every continuous map f : X → Y induces an
algebra homomorphism C(f) : C(Y) → C(X) by the rule C(f)(φ) = φ o f for every φ in C(Y).
Tangent and cotangent bundles: The map which sends every differentiable manifold to its tangent bundle and
every smooth map to its derivative is a covariant functor from the category of differentiable manifolds to the
category of vector bundles. Likewise, the map which sends every differentiable manifold to its cotangent bundle and
every smooth map to its pullback is a contravariant functor.
Doing these constructions pointwise gives covariant and contravariant functors from the category of pointed
differentiable manifolds to the category of real vector spaces.
Group actions/representations: Every group G can be considered as a category with a single object whose
morphisms are the elements of G. A functor from G to Set is then nothing but a group action of G on a particular set,
i.e. a G-set. Likewise, a functor from G to the category of vector spaces, VectK, is a linear representation of G. In
general, a functor G → C can be considered as an "action" of G on an object in the category C. If C is a group, then
this action is a group homomorphism.
Lie algebras: Assigning to every real (complex) Lie group its real (complex) Lie algebra defines a functor.
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Tensor products: If C denotes the category of vector spaces over a fixed field, with linear maps as morphisms, then
the tensor product defines a functor C × C → C which is covariant in both arguments.
Forgetful functors: The functor U : Grp → Set which maps a group to its underlying set and a group
homomorphism to its underlying function of sets is a functor. Functors like these, which "forget" some structure, are
termed forgetful functors. Another example is the functor Rng → Ab which maps a ring to its underlying additive
abelian group. Morphisms in Rng (ring homomorphisms) become morphisms in Ab (abelian group
homomorphisms).
Free functors: Going in the opposite direction of forgetful functors are free functors. The free functor F : Set →
Grp sends every set X to the free group generated by X. Functions get mapped to group homomorphisms between
free groups. Free constructions exist for many categories based on structured sets. See free object.
Homomorphism groups: To every pair A, B of abelian groups one can assign the abelian group Hom(A,B)
consisting of all group homomorphisms from A to B. This is a functor which is contravariant in the first and
covariant in the second argument, i.e. it is a functor Abop × Ab → Ab (where Ab denotes the category of abelian
groups with group homomorphisms). If f : A1 → A2 and g : B1 → B2 are morphisms in Ab, then the group
homomorphism Hom(f,g) : Hom(A2,B1) → Hom(A1,B2) is given by φ ↦ g o φ o f. See Hom functor.
Representable functors: We can generalize the previous example to any category C. To every pair X, Y of objects
in C one can assign the set Hom(X,Y) of morphisms from X to Y. This defines a functor to Set which is contravariant
in the first argument and covariant in the second, i.e. it is a functor Cop × C → Set. If f : X1 → X2 and g : Y1 → Y2 are
morphisms in C, then the group homomorphism Hom(f,g) : Hom(X2,Y1) → Hom(X1,Y2) is given by φ ↦ g o φ o f.
Functors like these are called representable functors. An important goal in many settings is to determine whether a
given functor is representable.
Presheaves: If X is a topological space, then the open sets in X form a partially ordered set Open(X) under inclusion.
Like every partially ordered set, Open(X) forms a small category by adding a single arrow U → V if and only if

. Contravariant functors on Open(X) are called presheaves on X. For instance, by assigning to every open
set U the associative algebra of real-valued continuous functions on U, one obtains a presheaf of algebras on X.

Properties
Two important consequences of the functor axioms are:
• F transforms each commutative diagram in C into a commutative diagram in D;
• if f is an isomorphism in C, then F(f) is an isomorphism in D.
On any category C one can define the identity functor 1C which maps each object and morphism to itself. One can
also compose functors, i.e. if F is a functor from A to B and G is a functor from B to C then one can form the
composite functor GF from A to C. Composition of functors is associative where defined. This shows that functors
can be considered as morphisms in categories of categories, for example in the category of small categories.
A small category with a single object is the same thing as a monoid: the morphisms of a one-object category can be
thought of as elements of the monoid, and composition in the category is thought of as the monoid operation.
Functors between one-object categories correspond to monoid homomorphisms. So in a sense, functors between
arbitrary categories are a kind of generalization of monoid homomorphisms to categories with more than one object.
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Bifunctors and multifunctors
A bifunctor (also known as a binary functor) is a functor in two arguments. The Hom functor is a natural example;
it is contravariant in one argument, covariant in the other.
Formally, a bifunctor is a functor whose domain is a product category. For example, the Hom functor is of the type
Cop × C → Set.
A multifunctor is a generalization of the functor concept to n variables. So, for example, a bifunctor is a
multifunctor with n=2.

Relation to other categorical concepts
Let C and D be categories. The collection of all functors C→D form the objects of a category: the functor category.
Morphisms in this category are natural transformations between functors.
Functors are often defined by universal properties; examples are the tensor product, the direct sum and direct product
of groups or vector spaces, construction of free groups and modules, direct and inverse limits. The concepts of limit
and colimit generalize several of the above.
Universal constructions often give rise to pairs of adjoint functors.

See also

Types of functors
• Additive functor: a functor between categories whose hom-sets are abelian groups is additive if it is a group

homomorphism of the hom-sets
• Adjoint functors: functors F and G are adjoint if Hom(FX,Y)≅Hom(X,GY), where the isomorphism is natural in X

and Y
• Derived functor: the image of a short exact sequence under a functor that is only half-exact can be extended to a

long exact sequence, the objects of which are images of a derived functor
• Enriched functor
• Essentially surjective functor: a functor every object of whose codomain is isomorphic to the image of an object

in the domain
• Exact functor: a functor that takes short exact sequences to short exact sequences
• Faithful functor: a functor that is injective on the set of morphisms with given domain and codomain
• Full functor: a functor that is surjective on the set of morphisms with given domain and codomain
• Smooth functor: a functor F from K-Vect to K-Vect such that Hom(V,W) → Hom(FV,FW) is smooth. Examples

include V*, ΛkV, ΣkV and the like.

Other
• Diagram (category theory)
• Functor category
• Kan extension

References
• S. Mac Lane. Categories for the Working Mathematician. Springer-Verlag: New York, 1971.
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Natural transformation
In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor
into another while respecting the internal structure (i.e. the composition of morphisms) of the categories involved.
Hence, a natural transformation can be considered to be a "morphism of functors". Indeed this intuition can be
formalized to define so-called functor categories. Natural transformations are, after categories and functors, one of
the most basic notions of category theory and consequently appear in the majority of its applications.

Definition
If F and G are functors between the categories C and D, then a natural transformation η from F to G associates to
every object X in C a morphism ηX : F(X) → G(X) in D called the component of η at X, such that for every
morphism f : X → Y in C we have:

This equation can conveniently be expressed by the commutative diagram

If both F and G are contravariant, the horizontal arrows in this diagram are reversed. If η is a natural transformation
from F to G, we also write η : F → G or η : F ⇒ G. This is also expressed by saying the family of morphisms ηX :
F(X) → G(X) is natural in X.
If, for every object X in C, the morphism ηX is an isomorphism in D, then η is said to be a natural isomorphism (or
sometimes natural equivalence or isomorphism of functors). Two functors F and G are called naturally
isomorphic or simply isomorphic if there exists a natural isomorphism from F to G.
An infranatural transformation η from F to G is simply a family of morphisms ηX: F(X) → G(X). Thus a natural
transformation is an infranatural transformation for which ηY o F(f) = G(f) o ηX for every morphism f : X → Y. The
naturalizer of η, nat(η), is the largest subcategory of C containing all the objects of C on which η restricts to a
natural transformation.

Examples

A worked example
Statements such as

"Every group is naturally isomorphic to its opposite group"
abound in modern mathematics. We will now give the precise meaning of this statement as well as its proof.
Consider the category Grp of all groups with group homomorphisms as morphisms. If (G,*) is a group, we define its
opposite group (Gop,*op) as follows: Gop is the same set as G, and the operation *op is defined by a*opb = b*a. All
multiplications in Gop are thus "turned around". Forming the opposite group becomes a (covariant!) functor from
Grp to Grp if we define fop = f for any group homomorphism f: G → H. Note that fop is indeed a group
homomorphism from Gop to Hop:

fop(a*opb) = f(b*a) = f(b)*f(a) = fop(a)*opfop(b).
The content of the above statement is:
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"The identity functor Id
Grp 

: Grp → Grp is naturally isomorphic to the opposite functor -op : Grp → Grp."
To prove this, we need to provide isomorphisms ηG : G → Gop for every group G, such that the above diagram
commutes. Set ηG(a) = a-1. The formulas (ab)-1 = b-1 a-1 and (a-1)-1 = a show that ηG is a group homomorphism
which is its own inverse. To prove the naturality, we start with a group homomorphism f : G → H and show ηH o f =
fop o ηG, i.e. (f(a))-1 = fop(a-1) for all a in G. This is true since fop = f and every group homomorphism has the
property (f(a))-1 = f(a-1).

Further examples
If K is a field, then for every vector space V over K we have a "natural" injective linear map V → V** from the
vector space into its double dual. These maps are "natural" in the following sense: the double dual operation is a
functor, and the maps are the components of a natural transformation from the identity functor to the double dual
functor.
Every finite dimensional vector space is also isomorphic to its dual space. But this isomorphism relies on an arbitrary
choice of basis, and is not natural, though there is an infranatural transformation. More generally, any vector spaces
with the same dimensionality are isomorphic, but not naturally so. (Note however that if the space has a
nondegenerate bilinear form, then there is a natural isomorphism between the space and its dual. Here the space is
viewed as an object in the category of vector spaces and transposes of maps.)
Consider the category Ab of abelian groups and group homomorphisms. For all abelian groups X, Y and Z we have a
group isomorphism

Hom(X⊗Y, Z) → Hom(X, Hom(Y, Z)).
These isomorphisms are "natural" in the sense that they define a natural transformation between the two involved
functors Ab × Abop × Abop → Ab.
Natural transformations arise frequently in conjunction with adjoint functors. Indeed, adjoint functors are defined by
a certain natural isomorphism. Additionally, every pair of adjoint functors comes equipped with two natural
transformations (generally not isomorphisms) called the unit and counit.

Operations with natural transformations
If η : F → G and ε : G → H are natural transformations between functors F,G,H:C → D, then we can compose them
to get a natural transformation εη : F → H. This is done componentwise: (εη)X = εXηX. This "vertical composition"
of natural transformation is associative and has an identity, and allows one to consider the collection of all functors C
→ D itself as a category (see below under Functor categories).
Natural transformations also have a "horizontal composition". If η : F → G is a natural transformation between
functors F,G:C → D and ε : J → K is a natural transformation between functors J, K:D → E, then the composition of
functors allows a composition of natural transformations ηε : JF → KG. This operation is also associative with
identity, and the identity coincides with that for vertical composition. The two operations are related by an identity
which exchanges vertical composition with horizontal composition.
If η : F → G is a natural transformation between functors F, G : C → D, and H : D → E is another functor, then we
can form the natural transformation Hη : HF → HG by defining

If on the other hand K : B → C is a functor, the natural transformation ηK : FK → GK is defined by

http://en.wikipedia.org/w/index.php?title=Injective
http://en.wikipedia.org/w/index.php?title=Linear_map
http://en.wikipedia.org/w/index.php?title=Dual_space
http://en.wikipedia.org/w/index.php?title=Nondegenerate_form
http://en.wikipedia.org/w/index.php?title=Bilinear_form
http://en.wikipedia.org/w/index.php?title=Transpose
http://en.wikipedia.org/w/index.php?title=Category_of_abelian_groups
http://en.wikipedia.org/w/index.php?title=Adjoint_functors
http://en.wikipedia.org/w/index.php?title=Associative


Natural transformation 164

Functor categories
If C is any category and I is a small category, we can form the functor category CI having as objects all functors from
I to C and as morphisms the natural transformations between those functors. This forms a category since for any
functor F there is an identity natural transformation 1F : F → F (which assigns to every object X the identity
morphism on F(X)) and the composition of two natural transformations (the "vertical composition" above) is again a
natural transformation.
The isomorphisms in CI are precisely the natural isomorphisms. That is, a natural transformation η : F → G is a
natural isomorphism if and only if there exists a natural transformation ε : G → F such that ηε = 1G and εη = 1F.
The functor category CI is especially useful if I arises from a directed graph. For instance, if I is the category of the
directed graph • → •, then CI has as objects the morphisms of C, and a morphism between φ : U → V and ψ : X → Y
in CI is a pair of morphisms f : U → X and g : V → Y in C such that the "square commutes", i.e. ψ f = g φ.
More generally, one can build the 2-category Cat whose
• 0-cells (objects) are the small categories,
• 1-cells (arrows) between two objects and are the functors from to ,
• 2-cells between two 1-cells (functors) and are the natural transformations from 

to .
The horizontal and vertical compositions are the compositions between natural transformations described previously.
A functor category is then simply a hom-category in this category (smallness issues aside).

Yoneda lemma
If X is an object of a locally small category C, then the assignment Y ↦ HomC(X, Y) defines a covariant functor FX :
C → Set. This functor is called representable (more generally, a representable functor is any functor naturally
isomorphic to this functor for an appropriate choice of X). The natural transformations from a representable functor
to an arbitrary functor F : C → Set are completely known and easy to describe; this is the content of the Yoneda
lemma.

Historical notes
Saunders Mac Lane, one of the founders of category theory, is said to have remarked, "I didn't invent categories to
study functors; I invented them to study natural transformations." Just as the study of groups is not complete without
a study of homomorphisms, so the study of categories is not complete without the study of functors. The reason for
Mac Lane's comment is that the study of functors is itself not complete without the study of natural transformations.
The context of Mac Lane's remark was the axiomatic theory of homology. Different ways of constructing homology
could be shown to coincide: for example in the case of a simplicial complex the groups defined directly, and those of
the singular theory, would be isomorphic. What cannot easily be expressed without the language of natural
transformations is how homology groups are compatible with morphisms between objects, and how two equivalent
homology theories not only have the same homology groups, but also the same morphisms between those groups.
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Categorical algebra
In category theory, a field of mathematics, a categorical algebra is an associative algebra, defined for any locally
finite category and commutative ring with unity. It generalizes the notions of group algebra and incidence algebra,
just as category generalizes the notions of group and partially ordered set.

Definition
Infinite categories are conventionally treated differently for group algebras and incidence algebras; the definitions
agree for finite categories. We first present the definition that generalizes the group algebra.

Group algebra-style definition
Let C be a category and R be a commutative ring with unit. Then as a set and as a module, the categorical algebra RC
(or R[C]) is the free module on the maps of C.
The multiplication on RC can be understood in several ways, depending on how one presents a free module.
Thinking of the free module as formal linear combinations (which are finite sums), the multiplication is the
multiplication (composition) of the category, where defined:

where if their composition is not defined. This is defined for any finite sum.
Thinking of the free module as finitely supported functions, the multiplication is defined as a convolution: if

(thought of as functionals on the maps of C), then their product is defined as:

The latter sum is finite because the functions are finitely supported.

Incidence algebra-style definition
The definition used for incidence algebras assumes that the category C is locally finite, is dual to the above
definition, and defines a different object. This isn't a useful assumption for groups, as a group that is locally finite as
a category is finite.
A locally finite category is one where every map can be written only finitely many ways as a product of
non-identity maps. The categorical algebra (in this sense) is defined as above, but allowing all coefficients to be
non-zero.
In terms of formal sums, the elements are all formal sums

where there are no restrictions on the (they can all be non-zero).
In terms of functions, the elements are any functions from the maps of C to R, and multiplication is defined as
convolution. The sum in the convolution is always finite because of the local finiteness assumption.
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Dual
The module dual of the category algebra (in the group algebra sense of the definition) is the space of all maps from
the maps of C to R, denoted F(C), and has a natural coalgebra structure. Thus for a locally finite category, the dual of
a categorical algebra (in the group algebra sense) is the categorical algebra (in the incidence algebra sense), and has
both an algebra and coalgebra structure.

Examples
• If C is a group (thought of as a groupoid with a single object), then RC is the group algebra.
• If C is a monoid (thought of as a category with a single object), then RC is the semigroup algebra
• If C is a partially ordered set, then (using the appropriate definition), RC is the incidence algebra.

Generalizations
The above definition does not need the structure of a category, and instead only needs a partial magma. However,
this generality is little-studied.
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• Haigh, John. On the Möbius Algebra and the Grothendieck Ring of a Finite Category J. London Math. Soc (2), 21

(1980) 81-92.

External links
• Categorical Algebra [1] at PlanetMath.
• Locally Finite Category [2] at PlanetMath.
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Functor category
In category theory, a branch of mathematics, the functors between two given categories can themselves be turned
into a category; the morphisms in this functor category are natural transformations between functors. Functor
categories are of interest for two main reasons:
• many commonly occurring categories are (disguised) functor categories, so any statement proved for general

functor categories is widely applicable;
• every category embeds in a functor category (via the Yoneda embedding); the functor category often has nicer

properties than the original category, allowing certain operations that were not available in the original setting.
An element of a functor category is sometimes called a diagram.

Definition
Suppose C is a small category (i.e. the objects form a set rather than a proper class) and D is an arbitrary category.
The category of functors from C to D, written as Funct(C,D) or DC, has as objects the covariant functors from C to
D, and as morphisms the natural transformations between such functors. Note that natural transformations can be
composed: if μ(X) : F(X) → G(X) is a natural transformation from the functor F : C → D to the functor G : C → D,
and η(X) : G(X) → H(X) is a natural transformation from the functor G to the functor H, then the collection η(X)μ(X)
: F(X) → H(X) defines a natural transformation from F to H. With this composition of natural transformations
(known as vertical composition, see natural transformation), DC satisfies the axioms of a category.
In a completely analogous way, one can also consider the category of all contravariant functors from C to D; we
write this as Funct(Cop,D).
If C and D are both preadditive categories (i.e. their morphism sets are abelian groups and the composition of
morphisms is bilinear), then we can consider the category of all additive functors from C to D, denoted by Add(C,D).

Examples
• If I is a small discrete category (i.e. its only morphisms are the identity morphisms), then a functor from I to C

essentially consists of a family of objects of C, indexed by I; the functor category CI can be identified with the
corresponding product category: its elements are families of objects in C and its morphisms are families of
morphisms in C.

• A directed graph consists of a set of arrows and a set of vertices, and two functions from the arrow set to the
vertex set, specifying each arrow's start and end vertex. The category of all directed graphs is thus nothing but the
functor category SetC, where C is the category with two objects connected by two morphisms, and Set denotes
the category of sets.

• Any group G can be considered as a one-object category in which every morphism is invertible. The category of
all G-sets is the same as the functor category SetG.

• Similar to the previous example, the category of k-linear representations of the group G is the same as the functor
category k-VectG (where k-Vect denotes the category of all vector spaces over the field k).

• Any ring R can be considered as a one-object preadditive category; the category of left modules over R is the
same as the additive functor category Add(R,Ab) (where Ab denotes the category of abelian groups), and the
category of right R-modules is Add(Rop,Ab). Because of this example, for any preadditive category C, the
category Add(C,Ab) is sometimes called the "category of left modules over C" and Add(Cop,Ab) is the category
of right modules over C.

• The category of presheaves on a topological space X is a functor category: we turn the topological space into a 
category C having the open sets in X as objects and a single morphism from U to V if and only if U is contained in 
V. The category of presheaves of sets (abelian groups, rings) on X is then the same as the category of
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contravariant functors from C to Set (or Ab or Ring). Because of this example, the category Funct(Cop, Set) is
sometimes called the "category of presheaves of sets on C" even for general categories C not arising from a
topological space. To define sheaves on a general category C, one needs more structure: a Grothendieck topology
on C. (Some authors refer to categories that are equivalent to SetC as presheaf categories.[1] )

Facts
Most constructions that can be carried out in D can also be carried out in DC by performing them "componentwise",
separately for each object in C. For instance, if any two objects X and Y in D have a product X×Y, then any two
functors F and G in DC have a product F×G, defined by (F×G)(c) = F(c)×G(c) for every object c in C. Similarly, if
ηc : F(c)→G(c) is a natural transformation and each ηc has a kernel Kc in the category D, then the kernel of η in the
functor category DC is the functor K with K(c) = Kc for every object c in C.
As a consequence we have the general rule of thumb that the functor category DC shares most of the "nice"
properties of D:
• if D is complete (or cocomplete), then so is DC;
• if D is an abelian category, then so is DC;
We also have:
• if C is any small category, then the category SetC of presheaves is a topos.
So from the above examples, we can conclude right away that the categories of directed graphs, G-sets and
presheaves on a topological space are all complete and cocomplete topoi, and that the categories of representations
of G, modules over the ring R, and presheaves of abelian groups on a topological space X are all abelian, complete
and cocomplete.
The embedding of the category C in a functor category that was mentioned earlier uses the Yoneda lemma as its
main tool. For every object X of C, let Hom(-,X) be the contravariant representable functor from C to Set. The
Yoneda lemma states that the assignment

is a full embedding of the category C into the category Funct(Cop,Set). So C naturally sits inside a topos.
The same can be carried out for any preadditive category C: Yoneda then yields a full embedding of C into the
functor category Add(Cop,Ab). So C naturally sits inside an abelian category.
The intuition mentioned above (that constructions that can be carried out in D can be "lifted" to DC) can be made
precise in several ways; the most succinct formulation uses the language of adjoint functors. Every functor F : D →
E induces a functor FC : DC → EC (by composition with F). If F and G is a pair of adjoint functors, then FC and GC

is also a pair of adjoint functors.
The functor category DC has all the formal properties of an exponential object; in particular the functors from E × C
→ D stand in a natural one-to-one correspondence with the functors from E to DC. The category Cat of all small
categories with functors as morphisms is therefore a cartesian closed category.

See also
• Diagram (category theory)
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Higher category theory
Higher category theory is the part of category theory at a higher order, which means that some equalities are
replaced by explicit arrows in order to be able to explicitly study the structure behind those equalities.

Strict higher categories
N-categories are defined inductively using the enriched category theory: 0-categories are sets, and (n+1)-categories
are categories enriched over the monoidal category of n-categories (with the monoidal structure given by finite
products).[1] This construction is well defined, as shown in the article on n-categories. This concept introduces
higher arrows, higher compositions and higher identities, which must well behave together. For example, the
category of small categories is in fact a 2-category, with natural transformations as second degree arrows. However
this concept is too strict for some purposes (for example, homotopy theory), where "weak" structures arise in the
form of higher categories.[2]

Weak higher categories
In weak n-categories, the associativity and identity conditions are no longer strict (that is, they are not given by
equalities), but rather are satisfied up to an isomorphism of the next level. An example in topology is the
composition of paths, which is associative only up to homotopy. These isomorphisms must well behave between
them and expressing this is the difficulty in the definition of weak n-categories. Weak 2-categories, also called
bicategories, were the first to be defined explicitly. A particularity of these is that a bicategory with one object is
exactly a monoidal category, so that bicategories can be said to be "monoidal categories with many objects." Weak
3-categories, also called tricategories, and higher-level generalizations are increasingly harder to define explicitly.
Several definitions have been given, and telling when they are equivalent, and in what sense, has become a new
object of study in category theory.
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Categorical group
In mathematics, a 2-group, or 2-dimensional higher group, is a certain combination of group and groupoid. The
2-groups are part of a larger hierarchy of n-groups. In some of the literature, 2-groups are also called gr-categories
or groupal groupoids.

Definition
A 2-group is a monoidal category G in which every morphism is invertible and every object has a weak inverse.
(Here, a weak inverse of an object x is an object y such that xy and yx are both isomorphic to the unit object.)

Strict 2-groups
Much of the literature focuses on strict 2-groups. A strict 2-group is a strict monoidal category in which every
morphism is invertible and every object has a strict inverse (so that xy and yx are actually equal to the unit object).
A strict 2-group is a group object in a category of categories; as such, they are also called groupal categories.
Conversely, a strict 2-group is a category object in the category of groups; as such, they are also called categorical
groups. They can also be identified with crossed modules, and are most often studied in that form. Thus, 2-groups in
general can be seen as a weakening of crossed modules.
Every 2-group is equivalent to a strict 2-group, although this can't be done coherently: it doesn't extend to 2-group
homomorphisms.

Properties
Weak inverses can always be assigned coherently: one can define a functor on any 2-group G that assigns a weak
inverse to each object and makes that object an adjoint equivalance in the monoidal category G.
Given a bicategory B and an object x of B, there is an automorphism 2-group of x in B, written AutB(x). The objects
are the automorphisms of x, with multiplication given by composition, and the morphisms are the invertible
2-morphisms between these. If B is a 2-groupoid (so all objects and morphisms are weakly invertible) and x is its
only object, then AutB(x) is the only data left in B. Thus, 2-groups may be identified with one-object 2-groupoids,
much as groups may be idenitified with one-object groupoids and monoidal categories may be identified with
one-object bicategories.
If G is a strict 2-group, then the objects of G form a group, called the underlying group of G and written G0. This
will not work for arbitrary 2-groups; however, if one identifies isomorphic objects, then the equivalence classes form
a group, called the fundamental group of G and written π1(G). (Note that even for a strict 2-group, the fundamental
group will only be a quotient group of the underlying group.)
As a monoidal category, any 2-group G has a unit object IG. The automorphism group of IG is an abelian group by
the Eckmann–Hilton argument, written Aut(IG) or π2(G).
The fundamental group of G acts on either side of π2(G), and the associator of G (as a monoidal category) defines an
element of the cohomology group H3(π1(G),π2(G)). In fact, 2-groups are classified in this way: given a group π1, an
abelian group π2, a group action of π1 on π2, and an element of H3(π1,π2), there is a unique (up to equivalence)
2-group G with π1(G) isomorphic to π1, π2(G) isomorphic to π2, and the other data corresponding.
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The fundamental 2-group
Given a topological space X and a point x in that space, there is a fundamental 2-group of X at x, written Π2(X,x). As
a monoidal category, the objects are loops at x, with multiplication given by concatenation, and the morphisms are
basepoint-preserving homotopies between loops, with these morphisms identified if they are themselves homotopic.
Conversely, given any 2-group G, one can find a unique (up to weak homotopy equivalence) pointed connected
space whose fundamental 2-group is G and whose homotopy groups πn are trivial for n > 2. In this way, 2-groups
classify pointed connected weak homotopy 2-types. This is a generalisation of the construction of Eilenberg–Mac
Lane spaces.
If X is a topological space with basepoint x, then the fundamental group of X at x is the same as the fundamental
group of the fundamental 2-group of X at x; that is,

This fact is the origin of the term "fundamental" in both of its 2-group instances.
Similarly,

Thus, both the first and second homotopy groups of a space are contained within its fundamental 2-group. As this
2-group also defines an action of π1(X,x) on π2(X,x) and an element of the cohomology group H3(π1(X,x),π2(X,x)),
this is precisely the data needed to form the Postnikov tower of X if X is a pointed connected homotopy 2-type.
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2- category
In category theory, a 2-category is a category with "morphisms between morphisms"; that is, where each hom set
itself carries the structure of a category. It can be formally defined as a category enriched over Cat (the category of
categories and functors, with the monoidal structure given by product of categories).

Definition
A 2-category C consists of:
• A class of 0-cells (or objects) A, B, ....

• For all objects A and B, a category . The objects of this category are called 1-cells and
its morphisms are called 2-cells; the composition in this category is usually written or and
called vertical composition or composition along a 1-cell.

• For any object A there is a functor from the terminal category (with one object and one arrow) to , that
picks out the identity 1-cell idA on A and its identity 2-cell ididA. In practice these two are often denoted simply by
A.

• For all objects A, B and C, there is a functor , called horizontal

composition or composition along a 0-cell, which is associative and admits the identity 2-cells of idA as identities.
The composition symbol is often omitted, the horizontal composite of 2-cells and

being written simply as .
The notion of 2-category differs from the more general notion of a bicategory in that composition of (1-)morphisms
is required to be strictly associative, whereas in a bicategory it need only be associative up to a 2-isomorphism. The
axioms of a 2-category are consequences of their definition as Cat-enriched categories:

• Vertical composition is associative and unital, the units being the identity 2-cells id .
• Horizontal composition is also (strictly) associative and unital, the units being the identity 2-cells idid 

on the identity 1-cells id .
• The interchange law holds; i.e. it is true that for composable 2-cells 

The interchange law follows from the fact that is a functor between hom categories. It can be drawn as a pasting
diagram as follows:

Here the left-hand diagram denotes the vertical composition of horizontal composites, the right-hand diagram
denotes the horizontal composition of vertical composites, and the diagram in the centre is the customary
representation of both.
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Doctrines
In mathematics, a doctrine is simply a 2-category which is heuristically regarded as a system of theories. For
example, algebraic theories, as invented by Lawvere, is an example of a doctrine, as are multi-sorted theories,
operads, categories, and toposes.

The objects of the 2-category are called theories, the 1-morphisms are called models of the in ,
and the 2-morphisms are called morphisms between models.
The distinction between a 2-category and a doctrine is really only heuristic: one does not typically consider a
2-category to be populated by theories as objects and models as morphisms. It is this vocabulary that makes the
theory of doctrines worth while.
For example, the 2-category Cat of categories, functors, and natural transformations is a doctrine. One sees
immediately that all presheaf categories are categories of models.
As another example, one may take the subcategory of Cat consisting only of product-preserving functors as
1-morphisms. This is the doctrine of multi-sorted algebraic theories. If one only wanted 1-sorted algebraic theories,
one would restrict the objects to only those categories that are generated under products by a single object.
Doctrines were invented by J. M. Beck.

See also
• n-category

References
• Generalised algebraic models, by Claudia Centazzo.
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N- category
In mathematics, n-categories are a high-order generalization of the notion of category. The category of (small)
n-categories n-Cat is defined by induction on n by:
• the category 0-Cat is the category Set of sets and functions,
• the category (n+1)-Cat is the category of categories enriched over the category n-Cat.
An n-category is then an object of n-Cat.
The monoidal structure of Set is the one given by the cartesian product as tensor and a singleton as unit. In fact any
category with finite products can be given a monoidal structure. The recursive construction of n-Cat works fine
because if a category C has finite products, the category of C-enriched categories has finite products too.
In particular, the category 1-Cat is the category Cat of small categories and functors.
n-categories have given rise to higher category theory, where several types of n-categories are studied. The necessity
of weakening the definition of an n-category for homotopic purposes has led to the definition of weak n-categories.
For distinction, the n-categories as defined above are called strict.

See also
• 2-category
• n-category number
• Weak n-category

References
• Tom Leinster (2004). Higher Operads, Higher Categories [10]. Cambridge University Press.
• Eugenia Cheng, Aaron Lauda (2004). Higher-Dimensional Categories: an illustrated guide book [1].
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Colored graph

A proper vertex coloring of the Petersen graph
with 3 colors, the minimum number possible.

In graph theory, graph coloring is a special case of graph labeling; it
is an assignment of labels traditionally called "colors" to elements of a
graph subject to certain constraints. In its simplest form, it is a way of
coloring the vertices of a graph such that no two adjacent vertices share
the same color; this is called a vertex coloring. Similarly, an edge
coloring assigns a color to each edge so that no two adjacent edges
share the same color, and a face coloring of a planar graph assigns a
color to each face or region so that no two faces that share a boundary
have the same color.

Vertex coloring is the starting point of the subject, and other coloring
problems can be transformed into a vertex version. For example, an
edge coloring of a graph is just a vertex coloring of its line graph, and a
face coloring of a planar graph is just a vertex coloring of its planar
dual. However, non-vertex coloring problems are often stated and studied as is. That is partly for perspective, and
partly because some problems are best studied in non-vertex form, as for instance is edge coloring.

The convention of using colors originates from coloring the countries of a map, where each face is literally colored.
This was generalized to coloring the faces of a graph embedded in the plane. By planar duality it became coloring
the vertices, and in this form it generalizes to all graphs. In mathematical and computer representations it is typical to
use the first few positive or nonnegative integers as the "colors". In general one can use any finite set as the "color
set". The nature of the coloring problem depends on the number of colors but not on what they are.
Graph coloring enjoys many practical applications as well as theoretical challenges. Beside the classical types of
problems, different limitations can also be set on the graph, or on the way a color is assigned, or even on the color
itself. It has even reached popularity with the general public in the form of the popular number puzzle Sudoku.
Graph coloring is still a very active field of research.
Note: Many terms used in this article are defined in Glossary of graph theory.

History
The first results about graph coloring deal almost exclusively with planar graphs in the form of the coloring of maps.
While trying to color a map of the counties of England, Francis Guthrie postulated the four color conjecture, noting
that four colors were sufficient to color the map so that no regions sharing a common border received the same color.
Guthrie’s brother passed on the question to his mathematics teacher Augustus de Morgan at University College, who
mentioned it in a letter to William Hamilton in 1852. Arthur Cayley raised the problem at a meeting of the London
Mathematical Society in 1879. The same year, Alfred Kempe published a paper that claimed to establish the result,
and for a decade the four color problem was considered solved. For his accomplishment Kempe was elected a Fellow
of the Royal Society and later President of the London Mathematical Society.[1]

In 1890, Heawood pointed out that Kempe’s argument was wrong. However, in that paper he proved the five color
theorem, saying that every planar map can be colored with no more than five colors, using ideas of Kempe. In the
following century, a vast amount of work and theories were developed to reduce the number of colors to four, until
the four color theorem was finally proved in 1976 by Kenneth Appel and Wolfgang Haken. Perhaps surprisingly, the
proof went back to the ideas of Heawood and Kempe and largely disregarded the intervening developments.[2] The
proof of the four color theorem is also noteworthy for being the first major computer-aided proof.
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In 1912, George David Birkhoff introduced the chromatic polynomial to study the coloring problems, which was
generalised to the Tutte polynomial by Tutte, important structures in algebraic graph theory. Kempe had already
drawn attention to the general, non-planar case in 1879,[3] and many results on generalisations of planar graph
coloring to surfaces of higher order followed in the early 20th century.
In 1960, Claude Berge formulated another conjecture about graph coloring, the strong perfect graph conjecture,
originally motivated by an information-theoretic concept called the zero-error capacity of a graph introduced by
Shannon. The conjecture remained unresolved for 40 years, until it was established as the celebrated strong perfect
graph theorem in 2002 by Chudnovsky, Robertson, Seymour, Thomas 2002.
Graph coloring has been studied as an algorithmic problem since the early 1970s: the chromatic number problem is
one of Karp’s 21 NP-complete problems from 1972, and at approximately the same time various exponential-time
algorithms were developed based on backtracking and on the deletion-contraction recurrence of Zykov (1949). One
of the major applications of graph coloring, register allocation in compilers, was introduced in 1981.

Definition and terminology

This graph can be 3-colored in 12 different ways.

Vertex coloring

When used without any qualification, a coloring of a graph is almost
always a proper vertex coloring, namely a labelling of the graph’s
vertices with colors such that no two vertices sharing the same edge
have the same color. Since a vertex with a loop could never be
properly colored, it is understood that graphs in this context are
loopless.

The terminology of using colors for vertex labels goes back to map
coloring. Labels like red and blue are only used when the number of
colors is small, and normally it is understood that the labels are drawn
from the integers {1,2,3,...}.

A coloring using at most k colors is called a (proper) k-coloring. The smallest number of colors needed to color a
graph G is called its chromatic number, χ(G). A graph that can be assigned a (proper) k-coloring is k-colorable,
and it is k-chromatic if its chromatic number is exactly k. A subset of vertices assigned to the same color is called a
color class, every such class forms an independent set. Thus, a k-coloring is the same as a partition of the vertex set
into k independent sets, and the terms k-partite and k-colorable have the same meaning.
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Chromatic polynomial

All nonisomorphic graphs on 3
vertices and their chromatic

polynomials. The empty graph E3
(red) admits a 1-coloring, the others
admit no such colorings. The green
graph admits 12 colorings with 3

colors.

The chromatic polynomial counts the number of ways a graph can be colored
using no more than a given number of colors. For example, using three colors,
the graph in the image to the right can be colored in 12 ways. With only two
colors, it cannot be colored at all. With four colors, it can be colored in
24 + 4⋅12 = 72 ways: using all four colors, there are 4! = 24 valid colorings
(every assignment of four colors to any 4-vertex graph is a proper coloring); and
for every choice of three of the four colors, there are 12 valid 3-colorings. So,
for the graph in the example, a table of the number of valid colorings would start
like this:

Available colors 1 2 3 4 …

Number of colorings 0 0 12 72 …

The chromatic polynomial is a function P(G, t) that counts the number of t-colorings of G. As the name indicates, for
a given G the function is indeed a polynomial in t. For the example graph, P(G, t) = t(t − 1)2(t − 2), and
indeed P(G, 4) = 72.
The chromatic polynomial includes at least as much information about the colorability of G as does the chromatic
number. Indeed, χ is the smallest positive integer that is not a root of the chromatic polynomial
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Chromatic polynomials for certain graphs

Triangle K3

Complete graph Kn

Tree with n vertices

Cycle Cn

Petersen graph

Edge coloring
An edge coloring of a graph, is a proper coloring of the edges, meaning an assignment of colors to edges so that no
vertex is incident to two edges of the same color. An edge coloring with k colors is called a k-edge-coloring and is
equivalent to the problem of partitioning the edge set into k matchings. The smallest number of colors needed for an
edge coloring of a graph G is the chromatic index, or edge chromatic number, χ′(G). A Tait coloring is a 3-edge
coloring of a cubic graph. The four color theorem is equivalent to the assertion that every planar cubic bridgeless
graph admits a Tait coloring.

Properties

Bounds on the chromatic number
Assigning distinct colors to distinct vertices always yields a proper coloring, so

The only graphs that can be 1-colored are edgeless graphs, and the complete graph of n vertices requires
colors. In an optimal coloring there must be at least one of the graph‘s m edges between every pair of

color classes, so

If G contains a clique of size k, then at least k colors are needed to color that clique; in other words, the chromatic
number is at least the clique number:

For interval graphs this bound is tight.
The 2-colorable graphs are exactly the bipartite graphs, including trees and forests. By the four color theorem, every
planar graph can be 4-colored.
A greedy coloring shows that every graph can be colored with one more color than the maximum vertex degree,

Complete graphs have and , and odd cycles have and , so
for these graphs this bound is best possible. In all other cases, the bound can be slightly improved; Brooks’
theorem[4] states that

Brooks’ theorem: for a connected, simple graph G, unless G is a complete graph or an odd
cycle.
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Graphs with high chromatic number
Graphs with large cliques have high chromatic number, but the opposite is not true. The Grötzsch graph is an
example of a 4-chromatic graph without a triangle, and the example can be generalised to the Mycielskians.

Mycielski’s Theorem: There exist triangle-free graphs with arbitrarily high chromatic number.
From Brooks’s theorem, graphs with high chromatic number must have high maximum degree. Another local
property that leads to high chromatic number is the presence of a large clique. But colorability is not an entirely local
phenomenon: A graph with high girth looks locally like a tree, because all cycles are long, but its chromatic number
need not be 2:

Theorem (Erdős): There exist graphs of arbitrarily high girth and chromatic number.

Bounds on the chromatic index

An edge coloring of is a vertex coloring of its line graph , and vice versa. Thus,

There is a strong relationship between edge colorability and the graph’s maximum degree . Since all edges
incident to the same vertex need their own color, we have

Moreover,

König’s theorem: if is bipartite.
In general, the relationship is even stronger than what Brooks’s theorem gives for vertex coloring:

Vizing’s Theorem: A graph of maximal degree has edge-chromatic number or .

Other properties
For planar graphs, vertex colorings are essentially dual to nowhere-zero flows.
About infinite graphs, much less is known. The following is one of the few results about infinite graph coloring:

If all finite subgraphs of an infinite graph G are k-colorable, then so is G, under the assumption of the axiom of
choice (de Bruijn & Erdős 1951).

Open problems
The chromatic number of the plane, where two points are adjacent if they have unit distance, is unknown, although it
is one of 4, 5, 6, or 7. Other open problems concerning the chromatic number of graphs include the Hadwiger
conjecture stating that every graph with chromatic number k has a complete graph on k vertices as a minor, the
Erdős–Faber–Lovász conjecture bounding the chromatic number of unions of complete graphs that have at exactly
one vertex in common to each pair, and the Albertson conjecture that among k-chromatic graphs the complete graphs
are the ones with smallest crossing number.
When Birkhoff and Lewis introduced the chromatic polynomial in their attack on the four-color theorem, they
conjectured that for planar graphs , the polymomial has no zeros in the region . Although it is
known that such a chromatic polynomial has no zeros in the region and that , their
conjecture is still unresolved. It also remains an unsolved problem to characterize graphs which have the same
chromatic polynomial and to determine which polynomials are chromatic.
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Algorithms

Graph coloring

Decision
Name Graph coloring, vertex coloring, k-coloring

Input Graph G with n vertices. Integer k

Output Does G admit a proper vertex coloring with k
colors?

Running time O(2 nn)

Complexity NP-complete

Reduction from 3-Satisfiability

Garey–Johnson GT4

Optimisation
Name Chromatic number

Input Graph G with n vertices.

Output χ(G)

Complexity NP-hard

Approximability O(n (log n)−3(log log n)2)

Inapproximability O(n1−ε) unless P = NP

Counting problem
Name Chromatic polymomial

Input Graph G with n vertices. Integer k

Output The number P (G,k) of proper k-colorings of G

Running time O(2 nn)

Complexity #P-complete

Approximability FPRAS for restricted cases

Inapproximability No PTAS unless P = NP

http://en.wikipedia.org/w/index.php?title=File:3-coloringEx.svg
http://en.wikipedia.org/w/index.php?title=NP-complete
http://en.wikipedia.org/w/index.php?title=3SAT
http://en.wikipedia.org/w/index.php?title=NP-hard
http://en.wikipedia.org/w/index.php?title=P%C2%A0%3D%C2%A0NP
http://en.wikipedia.org/w/index.php?title=Sharp-P-complete
http://en.wikipedia.org/w/index.php?title=FPRAS
http://en.wikipedia.org/w/index.php?title=Polynomial-time_approximation_scheme
http://en.wikipedia.org/w/index.php?title=P%C2%A0%3D%C2%A0NP


Colored graph 181

Efficient algorithms
Determining if a graph can be colored with 2 colors is equivalent to determining whether or not the graph is bipartite,
and thus computable in linear time using breadth-first search. More generally, the chromatic number and a
corresponding coloring of perfect graphs can be computed in polynomial time using semidefinite programming.
Closed formulas for chromatic polynomial are known for many classes of graphs, such as forest, chordal graphs,
cycles, wheels, and ladders, so these can be evaluated in polynomial time.

Brute-force search
Brute-force search for a k-coloring considers every of the assignments of k colors to n vertices and checks for
each if it is legal. To compute the chromatic number and the chromatic polynomial, this procedure is used for every

, impractical for all but the smallest input graphs.

Contraction

The contraction of graph is the graph obtained by identifying the vertices and , removing any
edges between them, and replacing them with a single vertex where any edges that were incident on or are
redirected to . This operation plays a major role in the analysis of graph coloring.
The chromatic number satisfies the recurrence relation:

due to Zykov (1949), where and are nonadjacent vertices, is the graph with the edge added.
Several algorithms are based on evaluating this recurrence, the resulting computation tree is sometimes called a
Zykov tree. The running time is based on the heuristic for choosing the vertices and .
The chromatic polynomial satisfies following recurrence relation

where and are adjacent vertices and is the graph with the edge removed. 
represents the number of possible proper colorings of the graph, when the vertices may have same or different
colors. The number of proper colorings therefore come from the sum of two graphs. If the vertices and have
different colors, then we can as well consider a graph, where and are adjacent. If and have the same
colors, we may as well consider a graph, where and are contracted. Tutte’s curiosity about which other graph
properties satisfied this recurrence led him to discover a bivariate generalization of the chromatic polynomial, the
Tutte polynomial.
The expressions give rise to a recursive procedure, called the deletion–contraction algorithm, which forms the basis
of many algorithms for graph coloring. The running time satisfies the same recurrence relation as the Fibonacci
numbers, so in the worst case, the algorithm runs in time within a polynomial factor of

.[5] The analysis can be improved to within a polynomial factor of the
number of spanning trees of the input graph.[6] In practice, branch and bound strategies and graph
isomorphism rejection are employed to avoid some recursive calls, the running time depends on the heuristic used to
pick the vertex pair.
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Greedy coloring

Two greedy colorings of the same graph using
different vertex orders. The right example
generalises to 2-colorable graphs with 

vertices, where the greedy algorithm expends
colors.

The greedy algorithm considers the vertices in a specific order ,…,
and assigns to the smallest available color not used by ’s

neighbours among ,…, , adding a fresh color if needed. The
quality of the resulting coloring depends on the chosen ordering. There
exists an ordering that leads to a greedy coloring with the optimal
number of colors. On the other hand, greedy colorings can be
arbitrarily bad; for example, the crown graph on vertices can be
2-colored, but has an ordering that leads to a greedy coloring with 
colors.

If the vertices are ordered according to their degrees, the resulting greedy coloring uses at most
colors, at most one more than the graph’s maximum degree. This heuristic is

sometimes called the Welsh–Powell algorithm.[7] Another heuristic establishes the ordering dynamically while the
algorithm proceeds, choosing next the vertex adjacent to the largest number of different colors.[8] Many other graph
coloring heuristics are similarly based on greedy coloring for a specific static or dynamic strategy of ordering the
vertices, these algorithms are sometimes called sequential coloring algorithms.

Computational complexity
Graph coloring is computationally hard. It is NP-complete to decide if a given graph admits a k-coloring for a given
k except for the cases k = 1 and k = 2. Especially, it is NP-hard to compute the chromatic number. Graph coloring
remains NP-complete even on planar graphs of degree 4.[9]

The best known approximation algorithm computes a coloring of size at most within a factor
O(n(log n)−3(log log n)2) of the chromatic number.[10] For all ε > 0, approximating the chromatic number within n1−ε

is NP-hard.[11]

It is also NP-hard to color a 3-colorable graph with 4 colors[12] and a k-colorable graph with k(log k ) / 25 colors for
sufficiently large constant k.[13]

Computing the coefficients of the chromatic polynomial is #P-hard. In fact, even computing the value of is
#P-hard at any rational point k except for k = 1 and k = 2.[14] There is no FPRAS for evaluating the chromatic
polynomial at any rational point k ≥ 1.5 except for k = 2 unless NP = RP.[15]

For edge coloring, the proof of Vizing’s result gives an algorithm that uses at most Δ+1 colors. However, deciding
between the two candidate values for the edge chromatic number is NP-complete.[16] In terms of approximation
algorithms, Vizing’s algorithm shows that the edge chromatic number can be approximated within 4/3, and the
hardness result shows that no (4/3 − ε )-algorithm exists for any ε > 0 unless P = NP. These are among the oldest
results in the literature of approximation algorithms, even though neither paper makes explicit use of that notion.[17]

Parallel and distributed algorithms
In the field of distributed algorithms, graph coloring is closely related to the problem of symmetry breaking. In a
symmetric graph, a deterministic distributed algorithm cannot find a proper vertex coloring. Some auxiliary
information is needed in order to break symmetry. A standard assumption is that initially each node has a unique
identifier, for example, from the set {1, 2, ..., n} where n is the number of nodes in the graph. Put otherwise, we
assume that we are given an n-coloring. The challenge is to reduce the number of colors from n to, e.g., Δ + 1.
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A straightforward distributed version of the greedy algorithm for (Δ + 1)-coloring requires Θ(n) communication
rounds in the worst case − information may need to be propagated from one side of the network to another side.
However, much faster algorithms exist, at least if the maximum degree Δ is small.
The simplest interesting case is an n-cycle. Richard Cole and Uzi Vishkin[18] show that there is a distributed
algorithm that reduces the number of colors from n to O(log n) in one synchronous communication step. By iterating
the same procedure, it is possible to obtain a 3-coloring of an n-cycle in O(log* n) communication steps (assuming
that we have unique node identifiers).
The function log*, iterated logarithm, is an extremely slowly growing function, "almost constant". Hence the result
by Cole and Vishkin raised the question of whether there is a constant-time distribute algorithm for 3-coloring an
n-cycle. Linial (1992) showed that this is not possible: any deterministic distributed algorithm requires Ω(log* n)
communication steps to reduce an n-coloring to a 3-coloring in an n-cycle.
The technique by Cole and Vishkin can be applied in arbitrary bounded-degree graphs as well; the running time is
poly(Δ) + O(log* n).[19] The current fastest known algorithm for (Δ + 1)-coloring is due to Leonid Barenboim and
Michael Elkin, which runs in time O(Δ) + log*(n)/2,[20] which is optimal in terms of n since the constant factor 1/2
cannot be improved due to Linial's lower bound.
The problem of edge coloring has also been studied in the distributed model. Panconesi & Rizzi (2001) achieve a
(2Δ − 1)-coloring in O(Δ + log* n) time in this model. The lower bound lower bound for distributed vertex coloring
due to Linial (1992) applies to the distributed edge coloring problem as well.

Applications

Scheduling
Vertex coloring models to a number of scheduling problems.[21] In the cleanest form, a given set of jobs need to be
assigned to time slots, each job requires one such slot. Jobs can be scheduled in any order, but pairs of jobs may be
in conflict in the sense that they may not be assigned to the same time slot, for example because they both rely on a
shared resource. The corresponding graph contains a vertex for every job and an edge for every conflicting pair of
jobs. The chromatic number of the graph is exactly the minimum makespan, the optimal time to finish all jobs
without conflicts.
Details of the scheduling problem define the structure of the graph. For example, when assigning aircrafts to flights,
the resulting conflict graph is an interval graph, so the coloring problem can be solved efficiently. In bandwidth
allocation to radio stations, the resulting conflict graph is a unit disk graph, so the coloring problem is
3-approximable.

Register allocation
A compiler is a computer program that translates one computer language into another. To improve the execution
time of the resulting code, one of the techniques of compiler optimization is register allocation, where the most
frequently used values of the compiled program are kept in the fast processor registers. Ideally, values are assigned
to registers so that they can all reside in the registers when they are used.
The textbook approach to this problem is to model it as a graph coloring problem.[22] The compiler constructs an
interference graph, where vertices are symbolic registers and an edge connects two nodes if they are needed at the
same time. If the graph can be colored with k colors then the variables can be stored in k registers.
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Other applications
The problem of coloring a graph has found a number of applications, including pattern matching.
The recreational puzzle Sudoku can be seen as completing a 9-coloring on given specific graph with 81 vertices.

Other colorings

Ramsey theory
An important class of improper coloring problems is studied in Ramsey theory, where the graph’s edges are assigned
to colors, and there is no restriction on the colors of incident edges. A simple example is the friendship theorem says
that in any coloring of the edges of the complete graph of six vertices there will be a monochromatic triangle;
often illustrated by saying that any group of six people either has three mutual strangers or three mutual
acquaintances. Ramsey theory is concerned with generalisations of this idea to seek regularity amid disorder, finding
general conditions for the existence of monochromatic subgraphs with given structure.

Other colorings

List coloring

Each vertex chooses from a list of colors

List edge-coloring

Each edge chooses from a list of colors

Total coloring

Vertices and edges are colored

Harmonious coloring

Every pair of colors appears on at most one edge

Complete coloring

Every pair of colors appears on at least one edge

Exact coloring

Every pair of colors appears on exactly one edge

Acyclic coloring

Every 2-chromatic subgraph is acyclic

Star coloring

Every 2-chromatic subgraph is a disjoint collection of stars

Strong coloring

Every color appears in every partition of equal size exactly once

Strong edge coloring

Edges are colored such that each color class induces a matching
(equivalent to coloring the square of the line graph)

Equitable coloring

The sizes of color classes differ by at most one

T-coloring

Distance between two colors of adjacent vertices must not
belong to fixed set T

Rank coloring

If two vertices have the same color i, then every path between
them contain a vertex with color greater than i

Interval edge-coloring

A color of edges meeting in a common vertex must be contiguous

Circular coloring

Motivated by task systems in which production proceeds in a
cyclic way

Path coloring

Models a routing problem in graphs

Fractional coloring

Vertices may have multiple colors, and on each edge the sum of
the color parts of each vertex is not greater than one

Oriented coloring

Takes into account orientation of edges of the graph

Cocoloring

An improper vertex coloring where every color class induces an
independent set or a clique

Subcoloring

An improper vertex coloring where every color class induces a
union of cliques

Weak coloring

An improper vertex coloring where every non-isolated node has at
least one neighbor with a different color

Sum-coloring

The criterion of minimalization is the sum of colors

Coloring can also be considered for signed graphs and gain graphs.
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See also
• Uniquely colorable graph
• Critical graph
• Graph homomorphism
• Mathematics of Sudoku
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Multicategory
In mathematics (especially category theory), a multicategory is a generalization of the concept of category that
allows morphisms of multiple arity. If morphisms in a category are viewed as analogous to functions, then
morphisms in a multicategory are analogous to functions of several variables.

Definition
A multicategory consists of
• a collection (often a proper class) of objects;
• for every finite sequence (X1, X2, ..., Xn) of objects (for n := 0, 1, 2, ...) and object Y, a set of morphisms from X1,

X2, ..., and Xn to Y; and
• for every object X, a special identity morphism (with n := 1) from X to X.
Additionally, there are composition operations: Given a sequence of sequences (X1,1, X1,2, ..., X1,n1; X2,1, X2,2, ...,
X2,n2; ...; Xm,1, Xm,2, ..., Xm,n'm

) of objects, a sequence (Y
1
, Y

2
, ..., Y

m
) of objects, and an object Z: if

• f1 is a morphism from X1,1, X1,2, ..., and X1,n to Y1;
• f2 is a morphism from X2,1, X2,2, ..., and X2,n to Y2;
• ...;
• fm is a morphism from Xm,1, Xm,2, ..., and Xm,n to Ym; and
• g is a morphism from Y1, Y2, ..., and Ym to Z:
then there is a composite morphism g(f1, f2, ..., fm) from X1,1, X1,2, ..., X1,n1, X2,1, X2,2, ..., X2,n2, ..., Xm,1, Xm,2, ...,
and Xm,n'm 

to Z. This must satisfy certain axioms:

• If m is 1, Z is Y, and g is the identity morphism for Y, then g(f) must equal f;
• if n1 is 1, n2 is 1, ..., nm is 1, X1 is Y1, X2 is Y2, ..., Xm is Ym, f1 is the identity morphism for Y1, f2 is the identity

morphism for Y2, ..., and fm is the identity morphism for Ym, then g(f1, f2, ..., fm) must equal g; and
• an associativity condition (involving a further level of composition) that takes a long time to write down.

Examples
There is a multicategory whose objects are (small) sets, where a morphism from the sets X1, X2, ..., and Xn to the set
Y is an n-ary function, that is a function from the Cartesian product X1 × X2 × ... × Xn to Y.
There is a multicategory whose objects are vector spaces (over the rational numbers, say), where a morphism from
the vector spaces X1, X2, ..., and Xn to the vector space Y is a multilinear operator, that is a linear transformation from
the tensor product X1 ⊗ X2 ⊗ ... ⊗ Xn to Y.
More generally, given any monoidal category C, there is a multicategory whose objects are objects of C, where a
morphism from the C-objects X1, X2, ..., and Xn to the C-object Y is a C-morphism from the monoidal product of X1,
X2, ..., and Xn to Y.
An operad is a multicategory with one unique object; except in degenerate cases, such a multicategory does not come
from a monoidal category. (The term "operad" is often reserved for symmetric multicategories; terminology varies.
[1])
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Enriched category
In category theory and its applications to mathematics, an enriched category is a category whose hom-sets are
replaced by objects from some other category, in a well-behaved manner.

Definition
We define here what it means for C to be an enriched category over a monoidal category .
The following structures are required:
• Let Ob(C) be a set (or proper class). An element of Ob(C) is called an object of C.
• For each pair (A,B) of objects of C, let Hom(A,B) be an object of M, called the hom-object of A and B.
• For each object A of C, let idA be a morphism in M from to Hom(A,A), called the identity morphism of A.
• For each triple (A,B,C) of objects of C, let

be a morphism in M called the composition morphism of A, B, and C.
The following axioms are required:
• Associativity: Given objects A, B, C, and D of C, we can go from Hom(C,D) ⊗ Hom(B,C) ⊗ Hom(A,B) to

Hom(A,D) in two ways, depending on which composition we do first. These must give the same result.

• Left identity: Given objects A and B of C, we can go from I ⊗ Hom(A,B) to just Hom(A,B) in two ways, either by
using idA on I and then using composition, or by simply using the fact that I is an identity for ⊗ in M. These must
give the same result.

• Right identity: Given objects A and B of C, we can go from Hom(A,B) ⊗ I to just Hom(A,B) in two ways, either
by using idB on I and then using composition, or by simply using the fact that I is an identity for ⊗ in M. These
must give the same result.

Given the above, C (consisting of all the structures listed above) is a category enriched over M.
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Examples
The most straightforward example is to take M to be a category of sets, with the Cartesian product for the monoidal
operation. Then C is nothing but an ordinary category. If M is the category of small sets, then C is a locally small
category, because the hom-sets will all be small. Similarly, if M is the category of finite sets, then C is a locally
finite category.
If M is the category 2 with Ob(2) = {0,1}, a single nonidentity morphism (from 0 to 1), and ordinary multiplication
of numbers as the monoidal operation, then C can be interpreted as a preordered set. Specifically, A ≤ B iff
Hom(A,B) = 1.
If M is a category of pointed sets with smash product for the monoidal operation, then C is a category with zero
morphisms. Specifically, the zero morphism from A to B is the special point in the pointed set Hom(A,B).
If M is a category of abelian groups with tensor product as the monoidal operation, then C is a preadditive category.

Relationship with monoidal functors
If there is a monoidal functor from a monoidal category M to a monoidal category N, then any category enriched
over M can be reinterpreted as a category enriched over N. Every monoidal category M has a monoidal functor M(I,
–) to the category of sets, so any enriched category has an underlying ordinary category. In many examples (such as
those above) this functor is faithful, so a category enriched over M can be described as an ordinary category with
certain additional structure or properties.

Enriched functors
An enriched functor is the appropriate generalization of the notion of a functor to enriched categories. Enriched
functors are then maps between enriched categories which respect the enriched structure.
If C and D are M-categories (that is, categories enriched over monoidal category M), an M-enriched functor T: C →
D is a map which assigns to each object of C an object of D and for each pair of objects a and b in C provides a
morphism in M Tab: C(a,b) → D(T(a),T(b)) between the hom-objects of C and D (which are objects in M),
satisfying enriched versions of the axioms of a functor, viz preservation of identity and composition.
Because the hom-objects need not be sets in an enriched category, one cannot speak of a particular morphism. There
is no longer any notion of an identity morphism, nor of a particular composition of two morphisms. Instead,
morphisms from the unit to a hom-object should be thought of as selecting an identity and morphisms from the
monoidal product should be thought of as composition. The usual functorial axioms are replaced with corresponding
commutative diagrams involving these morphisms.
In detail, one has that the diagram

commutes, which amounts to the equation

where I is the unit object of M. This is analogous to the rule F(ida) = idF(a) for ordinary functors. Additionally, one
demands that the diagram
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commute, which is analogous to the rule F(fg)=F(f)F(g) for ordinary functors.

References
• Kelly,G.M. "Basic Concepts of Enriched Category Theory" [1], London Mathematical Society Lecture Note

Series No.64 (C.U.P., 1982)
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Metamathematics

Metatheory
A metatheory or meta-theory is a theory whose subject matter is some other theory. In other words it is a theory
about a theory. Statements made in the metatheory about the theory are called metatheorems.
According to the systemic TOGA meta-theory [1] , a meta-theory may refer to the specific point of view on a theory
and to its subjective meta-properties, but not to its application domain. In the above sense, a theory T of the domain
D is a meta-theory if D is a theory or a set of theories. A general theory is not a meta-theory because its domain D
are not theories.
The following is an example of a meta-theoretical statement:[2]

“Any physical theory is always provisional, in the sense that it is only a hypothesis; you can never prove it. No matter how many times the
results of experiments agree with some theory, you can never be sure that the next time the result will not contradict the theory. On the other
hand, you can disprove a theory by finding even a single observation that disagrees with the predictions of the theory.

”
Meta-theory belongs to the philosophical specialty of epistemology and metamathematics, as well as being an object
of concern to the area in which the individual theory is conceived. An emerging domain of meta-theories is
systemics.

Taxonomy
Examining groups of related theories, a first finding may be to identify classes of theories, thus specifying a
taxonomy of theories. A proof engendered by a metatheory is called a metatheorem.

History
The concept burst upon the scene of twentieth-century philosophy as a result of the work of the German
mathematician David Hilbert, who in 1905 published a proposal for proof of the consistency of mathematics,
creating the field of metamathematics. His hopes for the success of this proof were dashed by the work of Kurt
Gödel who in 1931 proved this to be unattainable by his incompleteness theorems. Nevertheless, his program of
unsolved mathematical problems, out of which grew this metamathematical proposal, continued to influence the
direction of mathematics for the rest of the twentieth century.
The study of metatheory became widespread during the rest of that century by its application in other fields, notably
scientific linguistics and its concept of metalanguage.
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See also
• meta-
• meta-knowledge
• Metalogic
• Metamathematics
• Philosophy of social science

External links
• Meta-theoretical Issues (2003), Lyle Flint [3]
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Metalogic
Metalogic is the study of the metatheory of logic. While logic is the study of the manner in which logical systems
can be used to decide the correctness of arguments, metalogic studies the properties of the logical systems
themselves.[1] According to Geoffrey Hunter, while logic concerns itself with the "truths of logic," metalogic
concerns itself with the theory of "sentences used to express truths of logic."[2]

The basic objects of study in metalogic are formal languages, formal systems, and their interpretations. The study of
interpretation of formal systems is the branch of mathematical logic known as model theory, while the study of
deductive apparatus is the branch known as proof theory.

History
Metalogical questions have been asked since the time of Aristotle. However, it was only with the rise of formal
languages in the late 19th and early 20th century that investigations into the foundations of logic began to flourish. In
1904, David Hilbert observed that in investigating the foundations of mathematics that logical notions are
presupposed, and therefore a simultaneous account of metalogical and metamathematical principles was required.
Today, metalogic and metamathematics are largely synonymous with each other, and both have been substantially
subsumed by mathematical logic in academia.
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Important distinctions in metalogic

Metalanguage-Object language
In metalogic, formal languages are sometimes called object languages. The language used to make statements about
an object language is called a metalanguage. This distinction is a key difference between logic and metalogic. While
logic deals with proofs in a formal system, expressed in some formal language, metalogic deals with proofs about a
formal system which are expressed in a metalanguage about some object language.

Syntax-semantics
In metalogic, 'syntax' has to do with formal languages or formal systems without regard to any interpretation of
them, whereas, 'semantics' has to do with interpretations of formal languages. The term 'syntactic' has a slightly
wider scope than 'proof-theoretic', since it may be applied to properties of formal languages without any deductive
systems, as well as to formal systems. 'Semantic' is synonymous with 'model-theoretic'.

Use-mention
In metalogic, the words 'use' and 'mention', in both their noun and verb forms, take on a technical sense in order to
identify an important distinction.[2] The use–mention distinction (sometimes referred to as the words-as-words
distinction) is the distinction between using a word (or phrase) and mentioning it. Usually it is indicated that an
expression is being mentioned rather than used by enclosing it in quotation marks, printing it in italics, or setting the
expression by itself on a line. The enclosing in quotes of an expression gives us the name of an expression, for
example:

'Metalogic' is the name of this article.
This article is about metalogic.

Type-token
The type-token distinction is a distinction in metalogic, that separates an abstract concept from the objects which are
particular instances of the concept. For example, the particular bicycle in your garage is a token of the type of thing
known as "The bicycle." Whereas, the bicycle in your garage is in a particular place at a particular time, that is not
true of "the bicycle" as used in the sentence: "The bicycle has become more popular recently." This distinction is
used to clarify the meaning of symbols of formal languages.

Overview

Formal language
A formal language is an organized set of symbols the essential feature of which is that it can be precisely defined in
terms of just the shapes and locations of those symbols. Such a language can be defined, then, without any reference
to any meanings of any of its expressions; it can exist before any interpretation is assigned to it -- that is, before it
has any meaning. First order logic is expressed in some formal language. A formal grammar determines which
symbols and sets of symbols are formulas in a formal language.
A formal language can be defined formally as a set A of strings (finite sequences) on a fixed alphabet α. Some
authors, including Carnap, define the language as the ordered pair <α, A>.[3] Carnap also requires that each element
of α must occur in at least one string in A.
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Formation rules
Formation rules (also called formal grammar) are a precise description of a the well-formed formulas of a formal
language. It is synonymous with the set of strings over the alphabet of the formal language which constitute well
formed formulas. However, it does not describe their semantics (i.e. what they mean).

Formal systems
A formal system (also called a logical calculus, or a logical system) consists of a formal language together with a
deductive apparatus (also called a deductive system). The deductive apparatus may consist of a set of transformation
rules (also called inference rules) or a set of axioms, or have both. A formal system is used to derive one expression
from one or more other expressions.
A formal system can be formally defined as an ordered triple <α, , d>, where d is the relation of direct
derivability. This relation is understood in a comprehensive sense such that the primitive sentences of the formal
system are taken as directly derivable from the empty set of sentences. Direct derivability is a relation between a
sentence and a finite, possibly empty set of sentences. Axioms are laid down in such a way that every first place
member of d is a member of and every second place member is a finite subset of .
It is also possible to define a formal system using only the relation d. In this way we can omit , and α in the
definitions of interpreted formal language, and interpreted formal system. However, this method can be more
difficult to understand and work with.[3]

Formal proofs
A formal proof is a sequences of well-formed formulas of a formal language, the last one of which is a theorem of a
formal system. The theorem is a syntactic consequence of all the well formed formulae preceding it in the proof. For
a well formed formula to qualify as part of a proof, it must be the result of applying a rule of the deductive apparatus
of some formal system to the previous well formed formulae in the proof sequence.

Interpretations
An interpretation of a formal system is the assignment of meanings, to the symbols, and truth-values to the sentences
of the formal system. The study of interpretations is called Formal semantics. Giving an interpretation is
synonymous with constructing a model.

Results in metalogic
Results in metalogic consist of such things as formal proofs demonstrating the consistency, completeness, and
decidability of particular formal systems.
Major results in metalogic include:
• Proof of the uncountability of the set of all subsets of the set of natural numbers (Cantor's theorem 1891)
• Löwenheim-Skolem theorem (Leopold Löwenheim 1915 and Thoralf Skolem 1919)
• Proof of the consistency of truth-functional propositional logic (Emil Post 1920)
• Proof of the semantic completeness of truth-functional propositional logic (Paul Bernays 1918)[4] ,(Emil Post

1920)[2]

• Proof of the syntactic completeness of truth-functional propositional logic (Emil Post 1920)[2]

• Proof of the decidability of truth-functional propositional logic (Emil Post 1920)[2]

• Proof of the consistency of first order monadic predicate logic (Leopold Löwenheim 1915)
• Proof of the semantic completeness of first order monadic predicate logic (Leopold Löwenheim 1915)
• Proof of the decidability of first order monadic predicate logic (Leopold Löwenheim 1915)
• Proof of the consistency of first order predicate logic (David Hilbert and Wilhelm Ackermann 1928)
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• Proof of the semantic completeness of first order predicate logic (Gödel's completeness theorem 1930)
• Proof of the undecidability of first order predicate logic (Church's theorem 1936)
• Gödel's first incompleteness theorem 1931
• Gödel's second incompleteness theorem 1931

See also
• Metamathematics
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Metamathematics
Metamathematics is the study of mathematics itself using mathematical methods. This study produces metatheories,
which are mathematical theories about other mathematical theories. Metamathematical metatheorems about
mathematics itself were originally differentiated from ordinary mathematical theorems in the 19th century, to focus
on what was then called the foundational crisis of mathematics. Richard's paradox (Richard 1905) concerning certain
'definitions' of real numbers in the English language is an example of the sort of contradictions which can easily
occur if one fails to distinguish between mathematics and metamathematics.
The term "metamathematics" is sometimes used as a synonym for certain elementary parts of formal logic, including
propositional logic and predicate logic.

History
Metamathematics was intimately connected to mathematical logic, so that the early histories of the two fields, during
the late 19th and early 20th centuries, largely overlap. More recently, mathematical logic has often included the
study of new pure mathematics, such as set theory, recursion theory and pure model theory, which is not directly
related to metamathematics.
Serious metamathematical reflection began with the work of Gottlob Frege, especially his Begriffsschrift.
David Hilbert was the first to invoke the term "metamathematics" with regularity (see Hilbert's program). In his
hands, it meant something akin to contemporary proof theory, in which finitary methods are used to study various
axiomatized mathematical theorems.
Other prominent figures in the field include Bertrand Russell, Thoralf Skolem, Emil Post, Alonzo Church, Stephen
Kleene, Willard Quine, Paul Benacerraf, Hilary Putnam, Gregory Chaitin, Alfred Tarski and Kurt Gödel. In
particular, Gödel's proof that, given any finite number of axioms for Peano arithmetic, there will be true statements
about that arithmetic that cannot be proved from those axioms, a result known as the incompleteness theorem, is
arguably the greatest achievement of metamathematics and the philosophy of mathematics to date.
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Milestones
• Principia Mathematica (Whitehead and Russell 1925)
• Gödel's completeness theorem, 1930
• Gödel's incompleteness theorem, 1931
• Tarski's definition of model-theoretic satisfaction, now called the T-schema
• The proof of the impossibility of the Entscheidungsproblem, obtained independently in 1936–1937 by Church

and Turing.

See also
• Meta-
• Model theory
• Philosophy of mathematics
• Proof theory
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Alexander Grothendieck in Montreal, 1970

Born 28 March 1928
Berlin, Germany

Residence France

Fields algebraic geometry, homological algebra, and functional analysis

Alma mater University of Montpellier, University of Nancy

Doctoral advisor Laurent Schwartz

Doctoral students Pierre Deligne, Jean-Louis Verdier, Michel Raynaud

Notable awards Fields Medal (1966), Crafoord Prize(1988, declined)

Alexander Grothendieck (born March 28, 1928 in Berlin, Germany) is one of the most influential mathematicians
of the twentieth century, known principally for his revolutionary advances in algebraic geometry, but also for major
contributions to algebraic topology, number theory, category theory, Galois theory, descent theory, commutative
homological algebra and functional analysis. He was awarded the Fields Medal in 1966, and was co-awarded the
Crafoord Prize with Pierre Deligne in 1988, but Grothendieck declined it.
He is noted for his mastery of abstract approaches to mathematics, and his perfectionism in matters of formulation
and presentation. In particular, he demonstrated the ability to derive concrete results using only very general
methods. Relatively little of his work after 1960 was published by the conventional route of the learned journal,
circulating initially in duplicated volumes of seminar notes; his influence was to a considerable extent personal, on
French mathematics and the Zariski school at Harvard University. He retired in 1988 and within a few years became
reclusive.

Mathematical achievements
Grothendieck's early mathematical work was done in functional analysis between 1949 and 1953 working on (what
became) his doctoral thesis in Nancy, supervised by Jean Dieudonné and Laurent Schwartz. His key contributions
include topological tensor products of vector spaces, the theory of nuclear spaces and the application of Lp spaces in
studying linear maps between topological vector spaces. In the space of a few years, he had turned himself into a
leading authority on the theory of topological vector spaces — to the extent that Dieudonné compares his impact in
this field to that of Banach.[1]

However, it is algebraic geometry and related fields where Grothendieck did his most important and influential 
work. From about 1955 he started to work on sheaf theory and homological algebra, rapidly producing the very 
influential "Tôhoku paper" (Sur quelques points d'algèbre homologique, published in 1957) where he introduced 
Abelian categories and applied it to show that sheaf cohomology can be defined as certain derived functors in this
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context.
Homological methods and sheaf theory had already been introduced in algebraic geometry by Jean-Pierre Serre and
others, after sheaves had been defined by Jean Leray. Grothendieck took them to a higher level of abstraction and
turned them into a key organising principle of his theory. He thereby changed the tools and the level of abstraction in
algebraic geometry. He shifted attention from the study of individual varieties to the relative point of view (pairs of
varieties related by a morphism), allowing a broad generalization of many classical theorems. The first major
application was the relative version of Serre's theorem showing that the cohomology of a coherent sheaf on a
complete variety is finite dimensional; Grothendieck's theorem shows that the higher direct images of coherent
sheaves under a proper map are coherent; this reduces to Serre's theorem over a one-point space.
Next, in 1956, he applied the same thinking to the Riemann–Roch theorem, which had already recently been
generalized to any dimension by Hirzebruch. The Grothendieck–Riemann–Roch theorem was announced by
Grothendieck at the initial Mathematische Arbeitstagung in Bonn, in 1957. It appeared in print in a paper written by
Armand Borel with Serre. This result was his first major achievement in algebraic geometry. He went on to plan and
execute a major foundational programme for rebuilding the foundations of algebraic geometry; he exposed the main
outlines of this programme in his talk at the 1958 International Congress of Mathematicians.
His foundational work on algebraic geometry is at a higher level of abstraction than all prior versions. He adapted
the use of non-closed generic points, which led to the theory of schemes. He also pioneered the systematic use of
nilpotents. As 'functions' these can take only the value 0, but they carry infinitesimal information, in purely algebraic
settings. His theory of schemes has become established as the best universal foundation for this major field, because
of its great expressive power as well as technical depth. In that setting one can use birational geometry, techniques
from number theory, Galois theory and commutative algebra, and close analogues of the methods of algebraic
topology, all in an integrated way.[2] [3] [4]

His influence spilled over into many other branches of mathematics, for example the contemporary theory of
D-modules. (It also provoked adverse reactions, with many mathematicians seeking out more concrete areas and
problems.)[5] [6]

EGA and SGA
The bulk of Grothendieck's published work is collected in the monumental, and yet incomplete, Éléments de
géométrie algébrique (EGA) and Séminaire de géométrie algébrique (SGA). The collection Fondements de la
Géometrie Algébrique (FGA), which gathers together talks given in the Séminaire Bourbaki, also contains important
material.
Perhaps Grothendieck's deepest single accomplishment is the invention of the étale and l-adic cohomology theories,
which explain an observation of André Weil's that there is a deep connection between the topological characteristics
of a variety and its diophantine (number theoretic) properties. For example, the number of solutions of an equation
over a finite field reflects the topological nature of its solutions over the complex numbers. Weil realized that to
prove such a connection one needed a new cohomology theory, but neither he nor any other expert saw how to do
this until such a theory was found by Grothendieck.
This program culminated in the proofs of the Weil conjectures, the last of which was settled by Grothendieck's
student Pierre Deligne in the early 1970s after Grothendieck had largely withdrawn from mathematics.
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Major mathematical topics (from Récoltes et Semailles)
He wrote a retrospective assessment of his mathematical work (see the external link La Vision below). As his main
mathematical achievements ("maître-thèmes"), he chose this collection of 12 topics (his chronological order):
1. Topological tensor products and nuclear spaces
2. "Continuous" and "discrete" duality (derived categories and "six operations").
3. Yoga of the Grothendieck–Riemann–Roch theorem (K-theory, relation with intersection theory).
4. Schemes.
5. Topoi.
6. Étale cohomology including l-adic cohomology.
7. Motives and the motivic Galois group (and Grothendieck categories)
8. Crystals and crystalline cohomology, yoga of De Rham and Hodge coefficients.
9. Topological algebra, infinity-stacks, 'dérivateurs', cohomological formalism of toposes as an inspiration for a new

homotopic algebra
10. Tame topology.
11. Yoga of anabelian geometry and Galois–Teichmüller theory.
12. Schematic point of view, or "arithmetics" for regular polyhedra and regular configurations of all sorts.
He wrote that the central theme of the topics above is that of topos theory, while the first and last were of the least
importance to him.
Here the term yoga denotes a kind of "meta-theory" that can be used heuristically. The word yoke, meaning
"linkage", is derived from the same Indo-European root.

Life

Family and early life
Alexander Grothendieck was born in Berlin to anarchist parents: a Russian father from an ultimately Hassidic
family, Alexander "Sascha" Shapiro aka Tanaroff, and a mother from a German Protestant family, Johanna "Hanka"
Grothendieck; both of his parents had broken away from their early backgrounds in their teens.[7] At the time of his
birth Grothendieck's mother was married to Johannes Raddatz, a German journalist, and his birthname was initially
recorded as Alexander Raddatz. The marriage was dissolved in 1929 and Shapiro/Tanaroff acknowledged his
paternity, but never married Hanka Grothendieck.[7] Grothendieck lived with his parents until 1933 in Berlin. At the
end of that year, Shapiro moved to Paris, and Hanka followed him the next year. They left Grothendieck in the care
of Wilhelm Heydorn, a Lutheran Pastor and teacher[8] in Hamburg where he went to school. During this time, his
parents fought in the Spanish Civil War.

During WWII
In 1939 Grothendieck came to France and lived in various camps for displaced persons with his mother, first at the
Camp de Rieucros, and subsequently lived for the remainder of the war in the village of Le Chambon-sur-Lignon,
where he, along with other Jewish children, was sheltered and hidden in local boarding-houses or pensions. His
father was sent via Drancy to Auschwitz where he died in 1942. While Grothendieck lived in Chambon, he attended
the Collège Cévenol (now known as the Le Collège-Lycée Cévenol International), a unique secondary school
founded in 1938 by local Protestant pacifists and anti-war activists. Many of the other Jewish refugee children being
hidden in Chambon attended Cévenol and it was at this school that Grothendieck apparently first became fascinated
with mathematics.
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Studies and contact with research mathematics
After the war, the young Grothendieck studied mathematics in France, initially at the University of Montpellier. He
had decided to become a math teacher because he had been told that mathematical research had been completed early
in the 20th century and there were no more open problems.[9] However, his talent was noticed, and he was
encouraged to go to Paris in 1948.
Initially, Grothendieck attended Henri Cartan's Seminar at École Normale Supérieure, but lacking the necessary
background to follow the high-powered seminar, he moved to the University of Nancy where he wrote his
dissertation under Laurent Schwartz in functional analysis, from 1950 to 1953. At this time he was a leading expert
in the theory of topological vector spaces. By 1957, he set this subject aside in order to work in algebraic geometry
and homological algebra.

The IHÉS years
Installed at the Institut des Hautes Études Scientifiques (IHÉS), Grothendieck attracted attention by an intense and
highly productive activity of seminars (de facto working groups drafting into foundational work some of the ablest
French and other mathematicians of the younger generation). Grothendieck himself practically ceased publication of
papers through the conventional, learned journal route. He was, however, able to play a dominant role in
mathematics for around a decade, gathering a strong school.
During this time he had officially as students Michel Demazure (who worked on SGA3, on group schemes), Luc
Illusie (cotangent complex), Michel Raynaud, Jean-Louis Verdier (cofounder of the derived category theory) and
Pierre Deligne. Collaborators on the SGA projects also included Mike Artin (étale cohomology) and Nick Katz
(monodromy theory and Lefschetz pencils). Jean Giraud worked out torsor theory extensions of non-abelian
cohomology. Many others were involved.

The 'Golden Age'
Alexander Grothendieck's work during the `Golden Age' period at IHÉS established several unifying themes in
algebraic geometry, number theory, topology, category theory and complex analysis. His first (pre-IHÉS)
breakthrough in algebraic geometry was the Grothendieck–Hirzebruch–Riemann–Roch theorem, a far-reaching
generalisation of the Hirzebruch–Riemann–Roch theorem proved algebraically; in this context he also introduced
K-theory. Then, following the programme he outlined in his talk at the 1958 International Congress of
Mathematicians, he introduced the theory of schemes, developing it in detail in his Éléments de géométrie algébrique
(EGA) and providing the new more flexible and general foundations for algebraic geometry that has been adopted in
the field since that time. He went on to introduce the étale cohomology theory of schemes, providing the key tools
for proving the Weil conjectures, as well as crystalline cohomology and algebraic de Rham cohomology to
complement it. Closely linked to these cohomology theories, he originated topos theory as a generalisation of
topology (relevant also in mathematical logic, category theory, and also to computer software programming and
institutional ontology classification and bioinformatics). He also provided an algebraic definition of fundamental
groups of schemes and more generally the main structures of a categorical Galois theory. As a framework for his
coherent duality theory he also introduced derived categories, which were further developed by Verdier.
The results of work on these and other topics were published in the EGA and in less polished form in the notes of the
Séminaire de géométrie algébrique (SGA) that he directed at IHES.
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Politics and retreat from scientific community
Grothendieck's political views were radical and pacifist. Thus he strongly opposed both United States aggression in
Vietnam as well as Soviet military expansionism. He gave lectures on category theory in the forests surrounding
Hanoi while the city was being bombed, to protest against the Vietnam War (The Life and Work of Alexander
Grothendieck, American Math. Monthly, vol. 113, no. 9, footnote 6). He retired from scientific life around 1970,
after having discovered the partly military funding of IHÉS (see pp. xii and xiii of SGA1, Springer Lecture Notes
224). He returned to academia a few years later as a professor at the University of Montpellier, where he stayed until
his retirement in 1988. His criticisms of the scientific community, and especially of several mathematics circles, are
also contained in a letter, written in 1988, in which he states the reasons for his refusal of the Crafoord Prize.[10] He
declined the prize on ethical grounds in an open letter to the media.[11]

While the issue of military funding was perhaps the most obvious explanation for Grothendieck's departure from
IHÉS, those who knew him say that the causes of the rupture ran deeper. Pierre Cartier, a visiteur de longue durée
("long-term guest") at the IHÉS, wrote a piece about Grothendieck for a special volume published on the occasion of
the IHÉS's fortieth anniversary. The Grothendieck Festschrift was a three-volume collection of research papers to
mark his sixtieth birthday (falling in 1988), and published in 1990.[12]

In it Cartier notes that, as the son of an antimilitary anarchist and one who grew up among the disenfranchised,
Grothendieck always had a deep compassion for the poor and the downtrodden. As Cartier puts it, Grothendieck
came to find Bures-sur-Yvette "une cage dorée" ("a golden cage"). While Grothendieck was at the IHÉS, opposition
to the Vietnam War was heating up, and Cartier suggests that this also reinforced Grothendieck's distaste at having
become a mandarin of the scientific world. In addition, after several years at the IHÉS Grothendieck seemed to cast
about for new intellectual interests. By the late 1960s he had started to become interested in scientific areas outside
of mathematics. David Ruelle, a physicist who joined the IHÉS faculty in 1964, said that Grothendieck came to talk
to him a few times about physics. (In the 1970s Ruelle and the Dutch mathematician Floris Takens produced a new
model for turbulence, and it was Ruelle who invented the concept of a strange attractor in a dynamical system.)
Biology interested Grothendieck much more than physics, and he organized some seminars on biological topics.[13]

After leaving the IHÉS, Grothendieck tried but failed to get a position at the Collège de France.
He then went to Université de Montpellier, where he became increasingly estranged from the mathematical
community. Around this time, he founded a group called Survivre, which was dedicated to antimilitary and
ecological issues. His mathematical career, for the most part, ended when he left the IHÉS. In 1984 he wrote a
proposal to get a position through the Centre National de la Recherche Scientifique. The proposal, entitled Esquisse
d'un Programme ("Program Sketch") describes new ideas for studying the moduli space of complex curves.
Although Grothendieck himself never published his work in this area, the proposal became the inspiration for work
by other mathematicians and the source of the theory of dessin d'enfants. Esquisse d’un Programme was published in
the two-volume proceedings Geometric Galois Actions (Cambridge University Press, 1997)."[14]

Manuscripts written in the 1980s
While not publishing mathematical research in conventional ways during the 1980s, he produced several influential
manuscripts with limited distribution, with both mathematical and biographical content. During that period he also
released his work on Bertini type theorems contained in EGA 5, published by the Grothendieck Circle [15] in 2004.
La Longue Marche à travers la théorie de Galois [The Long March Through Galois Theory] is an approximately
1600-page handwritten manuscript produced by Grothendieck during the years 1980–1981, containing many of the
ideas leading to the Esquisse d'un programme[16] (see below, and also a more detailed entry), and in particular
studying the Teichmüller theory. (For an English translation of the tables of contents of these manuscripts see the
Wikipedia separate entry on the Esquisse d'un programme.)
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In 1983 he wrote a huge extended manuscript (about 600 pages) entitled Pursuing Stacks, stimulated by
correspondence with Ronald Brown, (see also R.Brown [17] and Tim Porter at University of Bangor in Wales), and
starting with a letter addressed to Daniel Quillen. This letter and successive parts were distributed from Bangor (see
External Links below): in an informal manner, as a kind of diary, Grothendieck explained and developed his ideas on
the relationship between algebraic homotopy theory and algebraic geometry and prospects for a noncommutative
theory of stacks. The manuscript, which is being edited for publication by G. Maltsiniotis, later led to another of his
monumental works, Les Dérivateurs. Written in 1991, this latter opus of about 2000 pages further developed the
homotopical ideas begun in Pursuing Stacks. Much of this work anticipated the subsequent development of the
motivic homotopy theory of F. Morel and V. Voevodsky in the mid 1990s.
His Esquisse d'un programme[16] (1984) is a proposal for a position at the Centre National de la Recherche
Scientifique, which he held from 1984 to his retirement in 1988. Ideas from it have proved influential, and have been
developed by others, in particular dessins d'enfants and a new field emerging as anabelian geometry. In La Clef des
Songes he explains how the reality of dreams convinced him of God's existence.
The 1000-page autobiographical manuscript Récoltes et semailles (1986) is now available on the internet in the
French original, and an English translation is underway (these parts of Récoltes et semailles have already been
translated into Russian] and published in Moscow[18] ). Some parts of Récoltes et semailles[19] [20] and the whole La
Clef des Songes [21] have been translated into Spanish.

Retirement into reclusion
In 1991, Grothendieck moved to an address he did not provide to his previous contacts in the mathematical
community. He is now said to live in southern France or Andorra and to be reclusive.

See also
• Ax-Grothendieck theorem
• Birkhoff–Grothendieck theorem
• Esquisse d'un Programme
• Grothendieck category [22]

• Grothendieck's connectedness theorem
• Grothendieck connection
• Grothendieck construction
• Grothendieck's Galois theory
• Grothendieck group
• Grothendieck inequality or Grothendieck constant
• Grothendieck–Katz p-curvature conjecture
• Grothendieck's relative point of view
• Grothendieck–Riemann–Roch theorem
• Grothendieck's Séminaire de géométrie algébrique
• Grothendieck space
• Grothendieck spectral sequence
• Grothendieck topology
• Grothendieck universe
• Tarski–Grothendieck set theory
• IHES
• IHES at Forty by Allyn Jackson [23]
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Grothendieck's Programme

Esquisse d'un Programme
"Esquisse d'un Programme" is a famous proposal for long-term mathematical research made by the German-born,
French mathematician Alexander Grothendieck [1] . He pursued the sequence of logically linked ideas in his
important project proposal from 1984 until 1988, but his proposed research continues to date to be of major interest
in several branches of advanced mathematics. Grothendieck's vision provides inspiration today for several
developments in mathematics such as the extension and generalization of Galois theory, which is currently being
extended based on his original proposal.

Brief history
Submitted in 1984, the Esquisse d'un Programme[2] was a successful proposal submitted by Alexander Grothendieck
for a position at the Centre National de la Recherche Scientifique, which Grothendieck held from 1984 till 1988.[3]

This proposal was however not formally published until 1997, because the author "could not be found, much less his
permission requested".[4] The dessins d'enfants, or "children's drawings" and "anabelian algebraic geometry" —
non-Abelian algebraic topology and noncommutative geometry — that are contained in this long-term program,
continue even today to inspire extensive mathematical studies.

Abstract of Grothendieck's programme
("Sommaire")
• 1. The Proposal and enterpise ("Envoi").
• 2. "Teichmüller's Lego-game and the Galois group of Q over Q" ("Un jeu de “Lego-Teichmüller” et le groupe de

Galois de Q sur Q").
• 3. Number fields associated with "dessin d'enfants". ("Corps de nombres associés à un dessin d’enfant").
• 4. Regular polyhedra over finite fields ("Polyèdres réguliers sur les corps finis").
• 5. General topology or a 'Moderated Topology' ("Haro sur la topologie dite 'générale', et réflexions heuristiques

vers une topologie dite 'modérée").
• 6. Differentiable theories and moderated theories ("Théories différentiables" (à la Nash) et “théories modérées").
• 7. Pursuing Stacks ("À la Poursuite des Champs"}[5] .
• 8. Two-dimensional geometry ("Digressions de géométrie bidimensionnelle"[6] .
• 9. Summary of proposed studies ("Bilan d’une activité enseignante").
• 10. Epilogue.
• Notes
Suggested further reading for the interested mathematical reader is provided in the References section.
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"The Long March across the Theory of Galois"
“This manuscript, consisting of some nearly 800 hand-written double pages, dating from 1981, was left behind with
Grothendieck's other unpublished manuscripts when he disappeared in 1991. Typed in Tex, it comes out to about 400
pages. It goes together with a further 1,000 pages or so of additional notes and sections which have not yet been read
or typed. Many of the major themes were summarised in the 1983 manuscript Esquisse d'un Programme.”
The Table of Contents for this important work by Alexander Grothendieck was originally compiled in French by the
author and is reproduced here after the English Translation of the major parts of the Long March.

Table of Contents for the Long March across Galois Theory
1. Multi-Galois Toposes (topoi)
2. Applications to topos coverings
3. Pro-multi-Galois Variants Complements
4. Introducing the arithmetic context; an `anabelian' (non-Abelian) fundamental conjecture...
10. Local analysis of Galois theory for reformulation of the conjecture (the necessary `purgatorium'...)
11. A taxonomic reflexion
12. Tangential structure at (sections of second type extensions)
13. Adjusting the hypotheses
14.Conditions on the groupoid systems originating from geometric considerations (in the nonabelian case, the
groupoid system can be expressed in terms of outer groups)
Returning to the arithmetic case: the Galois-type formulation, p. 53
15. A cohomological digression, p. 58
16. Returning to the topological case: critical orbits
17. Returning to the concept of cyclic group
18. Application to the finite subgroups of (the discrete case, para.18)
19.Tour of Teichmüller (spaces)
20. Digression: the description of 2-isotopic categories of algebraic curves p. 116
21. Teichmüller spaces p. 126
22. Returning to the surfaces of (finite) groups of operators ('formulating the equations' of the problem)
24. "Special" Teichmüller Groups
25. The case of "two groups of operators"
26. Profinite Teichmüller Groups, connection with the modular Teichmüller topos, conjecture
29. Critique of the previous approach
31. Digression: a finite group over a profinite cyclic group
32 Returning to the arithmetic aspects: a remarkable reconstruction of all of the étale topos of a complete algebraic
curve starting from an open nonabelian space...
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Extensions of Galois's theory for groups: Galois groupoids, categories and functors
Galois has developed a powerful, fundamental algebraic theory in mathematics that provides very efficient
computations for certain algebraic problems by utilizing the algebraic concept of groups, which is now known as the
theory of Galois groups; such computations were not possible before, and also in many cases are much more
effective than the 'direct' calculations without using groups[7] . To begin with, Alexander Grothendieck stated in his
proposal: "Thus, the group of Galois is realized as the automorphism group of a concrete, pro-finite group which
respects certain structures that are essential to this group." This fundamental, Galois group theory in mathematics
has been considerably expanded, at first to groupoids- as proposed in Alexander Grothendieck's Esquisse d' un
Programme (EdP)- and now already partially carried out for groupoids; the latter are now further developed beyond
groupoids to categories by several groups of mathematicians. Here, we shall focus only on the well-established and
fully validated extensions of Galois' theory. Thus, EdP also proposed and anticipated, along previous Alexander
Grothendieck's IHÉS seminars (SGA1 to SGA4) held in the 1960s, the development of even more powerful
extensions of the original Galois's theory for groups by utilizing categories, functors and natural transformations, as
well as further expansion of the manifold of ideas presented in Alexander Grothendieck's Descent Theory. The
notion of motive has also been pursued actively [8] . This was developed into the motivic Galois group, Grothendieck
topology and Grothendieck category [9] . Such developments were recently extended in algebraic topology via
representable functors and the fundamental groupoid functor.

See also
• Alexander Grothendieck
• Grothendieck's Galois theory
• Grothendieck group
• Grothendieck category [10]

• Grothendieck inequality or Grothendieck constant
• Grothendieck–Katz p-curvature conjecture
• Grothendieck's relative point of view
• Grothendieck–Riemann–Roch theorem
• Grothendieck's Séminaire de géométrie algébrique
• Grothendieck space
• Grothendieck spectral sequence
• Grothendieck topology
• Grothendieck universe
• Tarski–Grothendieck set theory
• IHES
• IHES at Forty by Allyn Jackson [23]
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Grothendieck's Galois theory
In mathematics, Grothendieck's Galois theory is a highly abstract approach to the Galois theory of fields,
developed around 1960 to provide a way to study the fundamental group of algebraic topology in the setting of
algebraic geometry. It provides, in the classical setting of field theory, an alternative perspective to that of Emil Artin
based on linear algebra, which became standard from about the 1930s.
The approach of Alexander Grothendieck is concerned with the category-theoretic properties that characterise the
categories of finite G-sets for a fixed profinite group G. For example, G might be the group denoted , which is
the inverse limit of the cyclic additive groups Z/nZ — or equivalently the completion of the infinite cyclic group Z
for the topology of subgroups of finite index. A finite G-set is then a finite set X on which G acts through a quotient
finite cyclic group, so that it is specified by giving some permutation of X.
In the above example, a connection with classical Galois theory can be seen by regarding as the profinite Galois
group Gal(F/F) of the algebraic closure F of any finite field F, over F. That is, the automorphisms of F fixing F are
described by the inverse limit, as we take larger and larger finite splitting fields over F. The connection with
geometry can be seen when we look at covering spaces of the unit disk in the complex plane with the origin
removed: the finite covering realised by the zn map of the disk, thought of by means of a complex number variable z,
corresponds to the subgroup n.Z of the fundamental group of the punctured disk.
The theory of Grothendieck, published in SGA1, shows how to reconstruct the category of G-sets from a fibre
functor Φ, which in the geometric setting takes the fibre of a covering above a fixed base point (as a set). In fact
there is an isomorphism proved of the type

G ≅ Aut(Φ),
the latter being the group of automorphisms (self-natural equivalences) of Φ. An abstract classification of categories
with a functor to the category of sets is given, by means of which one can recognise categories of G-sets for G
profinite.
To see how this applies to the case of fields, one has to study the tensor product of fields. Later developments in
topos theory make this all part of a theory of atomic toposes.
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Ronald Brown (mathematician)
Ronald Brown, MA, D.Phil Oxon, FIMA, Emeritus Professor (born January 4, 1935) is an English mathematician.
He is best known for his many, substantial contributions to Higher Dimensional Algebra and non-Abelian Algebraic
Topology [14][1] , involving groupoids, algebroids [2], category theory, categorical generalizations of Galois theory,
and generalization of the van Kampen theorem to higher homotopy groupoids, [3] as well as for being one of the first
openly gay mathematicians in modern academia. These include four fundamental books and textbooks: Elements of
Modern Topology, Topology: a geometric account of general topology, homotopy types, and the fundamental
groupoid[4] ,[5] , Topology and Groupoids, and Nonabelian algebraic topology [14] (in two volumes) that contain
original and important results in algebraic topology that are hard to obtain from other sources[1] . His editorial
contributions over many years have provided generous, expert help and international support to several generations
of mathematicians in rapidly developing areas of higher dimensional algebra, non-Abelian algebraic topology,
including Category Theory, non-Abelian and Abelian, Homology and Cohomology [6], and Higher Dimensional
Homotopy [7] with applications. Brown's interest in the general topology of function spaces began in the early 1960s,
when he introduced the notion of an adequate and convenient category of topological spaces for homotopy theory,
thus stimulating a wide range of work on convenient categories. Moreover, the term 'Higher Dimensional Algebra'
was introduced in a 1987 survey paper by Brown [8] , following from the earlier higher dimensional group theory[9]

introduced in 1982; this area has been remarkably successful not only in applications in other areas of mathematics,
but also in quantum physics and computer science. Such potential applications that were recently suggested are novel
algebraic topology and category theory approaches to extended quantum symmetry through quantum groupoid
representations [10] to locally-covariant quantum gravity [11] theories and symmetry breaking. Several of Dr. Brown's
papers combine methods of double groupoids [3] with differential ideas on holonomy, leading to the development of
higher order notions of 'flows', analogous to evolving systems in concurrency theory. He collaborated with Higgins
since the 1970s, and also with several other coworkers afterwards, on crossed complexes and the related higher
homotopy groupoids [3]. He then completed the studies on pure higher order category theory in a publication with
F.A. Al-Agl and R. Steiner, on "Multiple categories: the equivalence between a globular and cubical approach" [12],
published in Advances in Mathematics, 170 (2002) 71-118[13] .
His key scientific results in mathematics to date have included: homotopy double groupoids [3], double algebroids
[14], cubical omega-groupoids with connections[15] , and last-but-not least, proofs of higher-homotopy generalized
van Kampen theorems [16] in homotopy theory[17] .
Dr. Ronald Brown has 115 items listed on MathSciNet, has given numerous presentations at scientific meetings, and
published over 30 articles and items on popularization and teaching of mathematics. Two books are now in print, and
a third one is close to being completed with two coworkers. He published over 200 research papers and presentations
at scientific meetings, including several monographs and four books.
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Biography
Ronald Brown was born on January 4, 1935 in London, England. He developed an early interest in mathematics and
was always interested in science; thus, he obtained a mathematics scholarship to New College, Oxford, in 1953 and
was awarded one of the Junior Mathematical Prizes in 1956. He then studied algebraic topology at Oxford,
supervised first by J.H.C. Whitehead, (died 1960), and then, when at Liverpool, he was supervised by M.G. Barratt.
Brown's thesis was submitted in 1961, under the supervision of Professor M.G. Barratt, and was on the homotopy
type of function spaces, and this led to a long term interest in the applications of what are now called monoidal
closed categories. The particular interest in the general topology of function spaces led to the notion of a "category
adequate and convenient for all purposes of topology", and in ref.[18] he suggested for this end the categories of
Hausdorff k-spaces and continuous functions, or Hausdorff spaces and k-continuous functions, thus stimulating a
wide range of work on convenient categories. In collaboration with Peter Booth in the 1970s he helped develop
Booth's notion of fiber-wise mapping spaces, i.e. a function space in the category of topological spaces over a given
space B,[19] . The writing of a textbook on basic general and algebraic topology from a geometric viewpoint [20] led
to his development of a generalisation to the non-connected case of the van Kampen theorem for the fundamental
group, and then the use of groupoids for an exposition of most of 1-dimensional homotopy theory he won number 1
math student in his 3rd grade class.
After two university teaching appointments at Liverpool and at Hull University, he settled in 1970 at Bangor
University in Wales where he became an Emeritus Professor in 2001. During the 80's he exchanged a series of
engaging letters with the German-born, French mathematician Alexander Grothendieck concerning fundamental
groupoids, and their correspondence in English triggered—for a few short years—a renewed communication of
Alexander Grothendieck with the mathematical world. Brown visited Université Louis Pasteur in Strasbourg as an
Associate Visiting Professor during 1983 and 1984, and had fruitful excahnges with several other French
mathematicians, as for example, on groupoids with Jean Pradines, a research associate of former Professor Charles
Ehresmann, (one of the founding mathematicians of category theory--along with Alexander Grothendieck—in
France).
This suggested in 1965 the possibility of the existence and use of "higher homotopy groupoids", finally realised in a
sequence of 12 papers by R. Brown and P.J. Higgins from 1978 to 2003, for which a recent survey is presented in
[21] , and in a different form by R. Brown and J.-L. Loday in two papers in 1987,[22]

The idea from 1965 that these generalisations to higher dimensions of the non-Abelian fundamental groupoid should
be developed in the spirit of group theory led to the term "higher dimensional group theory" [23] in 1982 and then to
"higher dimensional algebra" in 1987 in the survey paper [24] . The applications to higher homotopy van Kampen
theorems, which are in the area of 'local-to-global theorems', lead to some specific non-Abelian calculations in
homotopy theory, for example of integral homotopy types, unavailable by other means, and to an understanding of
certain homotopical ideas. The use of cubical methods in this work has also had applications in the use of algebraic
and topological methods in the theory of concurrency in computer science. The investigation of "higher order
symmetry" has also had applications to homotopy theory.[25] He has also worked on topological and differential
groupoids, particularly with students, and the notion of holonomy and monodromy, pursuing ideas of Charles
Ehresmann and J. Pradines. Working with T. Porter and A. Bak, Dr. Brown has developed the work of A. Bak on
"global actions" to the notion of groupoid atlas, a kind of "algebraic patching" concept, and this has found
applications in multiagent systems. Dr. Brown also has several papers in the area of symbolic computation and
mathematical rewriting.
A long term interest in the popularization of mathematics led to a number of articles in this area [26], and to a
collaboration in presenting the work of the sculptor John Robinson [27] .
Presently, in retirement, Professor Ronald Brown actively pursues his research in the beautiful surroundings of the
village of Deganwy on the Conwy Estuary.
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University education
· In 1956 B.A. at Oxford University . In 1961 Ph.D. at Liverpool University · In 1962 D.Phil. at Oxford University

Academic positions
· In 1959 he was appointed an Assistant Lecturer, and then Lecturer at Liverpool University. · During 1964–70 he
worked as a Senior Lecturer, and then Reader at Hull University. · From 1970 to 1999 he taught and carried out
research as a full Professor of Pure Mathematics at the University of Wales, Bangor, UK. · During 1970–1993 he
functioned as the Head of Pure Mathematics, and also of the School of Mathematics in several variants · In 1990 he
was elected as Chairman of the University of Wales Validation Board for a four year term · During 1983–84 he
visited as a `Professeur associé pour un mois', at the Université Louis Pasteur in Strasbourg. · From 1999 to 2001 he
was appointed a Half-time Research Professorship, and in September 2001 he became Professor Emeritus of the
University of Wales.
Between 1959 and 2001 he advised 23 successful Ph.D. students in Mathematics.

Leading assignments
· 1989–2001: Director, Centre for the Popularisation of Mathematics, University of Wales, Bangor.
· 1995–2000: Coordinator, 'INTAS Project on Algebraic K-theory, groups and categories', for Bangor, the University
of Bielefeld, Georgian Mathematical Institute, State Universities of Moscow and of St. Petersburg, and the Steklov
Institute, St. Petersburg.
· 2002–2004 Leverhulme Emeritus Research Fellowship for a project on "Crossed complexes and homotopy
groupoids".

Editorships
· Between 1968 and 86 he contributed also as Editor to the Chapman & Hall, Mathematics Series. · During
1975–1994 he was on the Editorial Advisory Board of the London Mathematical Society. · In 1995 he became a
Founding member on the Management Committee of the Editorial Board of several electronic journals: Theory and
Applications of Categories. · 1996–2007 Editorial Board: Applied Categorical Structures (Kluwer). · Since 1999 he
is a Founding member of the electronic journal: Homology, Homotopy and Applications. 2006 — Journal of
Homotopy and Related Structures.

Honors and awards
• The Leverhulme Emeritus Fellowship
• August, 2003: Opening lecture, `Global actions and groupoid atlases', to the conference `Directions in K-theory',

Poznan, in honour of the 60th birthday of A. Bak.
• 2000: Grant to produce a CD-ROM as part of an EC Project , 'Raising Public Awareness of Mathematics in

WMY2000'.

• 2003-2005: EPSRC Grant: Higher Dimensional algebra and Differential Geometry (Visiting Fellowship for J.F.
Glazebrook, Eastern Illinois University, USA).
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Selected publications
The following list of publications is selected to represent the impressively wide range of research carried out by Dr.
Ronald Brown. For example his 1964 paper on "The twisted Eilenberg-Zilber theorem" became influential because it
contained the first version of what is now known as the Homological Perturbation Lemma; the resulting
Homological Perturbation Theory has afterwards proved to be an important theoretical and computational tool in
algebraic topology and in the computation of resolutions.
• R. Brown. [Books 1, 2 and 3] Elements of Modern Topology, McGraw Hill, Maidenhead, (1968); second edition:

Topology: a geometric account of general topology, homotopy types, and the fundamental groupoid, Ellis
Horwood, Chichester (1988) 460 pp. Third edition: Topology and Groupoids, Booksurge LLC, (2006)
xxv+525p.]

• R. Brown (with P.J. HIGGINS, R.SIVERA). [Book 4] Nonabelian algebraic topology, 2007 (vol.1), and vol.2 in
2008 (in preparation).

• R. Brown. Function spaces and product topologies, Quart. J. Math. (2) 15 (1964), 238-250. [2]
• R. Brown. The twisted Eilenberg-Zilber theorem., Celebrazioni Archimedi de secolo XX, Syracusa, 1964: Simposi

di topologia (1967) 33–37.
• R. Brown (with P.I. BOOTH), On the application of fibred mapping spaces to exponential laws for bundles,

ex-spaces and other categories of maps., Gen. Top. Appl. 8 (1978) 165–179.
• R.Brown (with J. HUEBSCHMANN), Identities among relations, in Low dimensional topology, London Math.

Soc. Lecture Note Series, 48 (ed. R. Brown and T.L. Thickstun, Cambridge University Press) (1982),
pp. 153–202. **This paper on identities among relations has been useful to many as a basic source.

• R.Brown (with S.P. HUMPHRIES), Orbits under symplectic transvections II: the case K = F2, Proc. London
Math. Soc. (3) 52 (1986) 532–556.

• R.Brown (with P.J. HIGGINS), Tensor products and homotopies for omega-groupoids and crossed complexes, J.
Pure Appl. Alg. 47 (1987) 1-33.

• R.Brown (with J.-L. LODAY), Homotopical excision, and Hurewicz theorems, for n-cubes of spaces, Proc.
London Math. Soc. (3) 54 (1987) 176–192.

• R. Brown. From groups to groupoids: a brief survey, Bull. London Math. Soc., 19 (1987) 113-134. **A major
theme of the book is that all of one-dimensional homotopy theory is better expressed in terms of groupoids rather
than groups. This raised the question of applications of groupoids in higher homotopy theory, and so to a long
march to higher order Van Kampen Theorems, which give new higher dimensional, non-Abelian, local-to-global
methods, with relations to homology and K-theory.

• R. Brown (with J.-L. LODAY)., Van Kampen theorems for diagrams of spaces, Topology, 26 (1987) 311–334.
• R. Brown (with N.D. GILBERT)., Algebraic models of 3-types and automorphism structures for crossed modules,

Proc. London Math. Soc. (3) 59 (1989) 51–73.
• R. Brown (with A. RAZAK SALLEH)., Free crossed resolutions of groups and presentations of modules of

identities among relations, LMS J. Comp. and Math. 2 (1999) 28–61. Interest in algorithmic procedures and
specific computations was shown in [107] and [124]. Such computations also occur in [51], which introduced a
non-Abelian tensor product of groups which act on each other, and for which the bibliography now extends to
over 100 papers.

• R. Brown (with A. HEYWORTH)., Using rewriting systems to compute left Kan extensions and induced actions
of categories, J. Symbolic Computation 29 (2000) 5–31.

• R. Brown (with I. IÇEN), Locally Lie subgroupoids and their Lie holonomy and monodromy groupoids,
Topology and its Applications. 115 (2001) 125–138.
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• R. Brown (with M. GOLASINSKI, T.PORTER and A.P.TONKS)., On function spaces of equivariant maps and
the equivariant homotopy theory of crossed complexes II: the general topological group case., K-Theory 23
(2001) 129–155.

• R. Brown (with A. AL-AGL and R. STEINER)., Multiple categories: the equivalence between a globular and
cubical approach, Advances in Mathematics, 170 (2002) 71–118.

• R. Brown(with I. IÇEN)., Towards a 2-dimensional notion of holonomy, Advances in Mathematics, 178 (2003)
141–175.

• R. Brown (with C.D.WENSLEY)., Computation and homotopical applications of induced crossed modules,
Journal of Symbolic Computation, 35 (2003) 59–72.

• R. Brown. Crossed complexes and homotopy groupoids as non-commutative tools for higher dimensional
local-to-global problems, Proceedings of the Fields Institute Workshop on Categorical Structures for Descent and
Galois theory, Hopf Algebras and Semiabelian Categories, September 23–28, Fields Institute Communications
43 (2004) 101–130. math.AT/0212274 .

• R. Brown (with Bak, A., Minian, G., and Porter, T.), Global actions, groupoid atlases and applications, J.
Homotopy and Related Structures, 1 (2006) 101-167.

References
• R. Brown (with Bak, A., Minian, G., and Porter, T.)., Global actions, groupoid atlases and applications., J.

Homotopy and Related Structures: 1 (2006) 101–167.
• Higher Dimensional Algebra citations list [28]

• Georgescu, George and Popescu, Andrei. A common generalization for MV-algebras and Lukasiewicz-Moisil
algebras, Archive for Mathematical Logic, Vol. 45, No. 8. (November 2006), pp. 947-981. (in reference to
Heyting-algebra higher-dimensional-algebra hyperalgebras \Lukasiewicz-Moisil-algebras metalogics
MV-algebras by Scis0000002 on 2007-07-11) [29]

• John C. Baez, James Dolan., Higher-Dimensional Algebra III: n-Categories and the Algebra of
Opetopes.,[[quantum algebra|Quantum Algebra [30]] and Topology, Adv. Math. 135 (1998), 145-206].

• John C. Baez, Laurel Langford., Higher-Dimensional Algebra IV: 2-Tangles.,([[Quantum algebra|Quantum
Algebra [31]] (math.QA); Algebraic Topology (math.AT); Category Theory (math.CT)), Adv. Math. 180 (2003),
705-764.]

• John C Baez, Aaron D Lauda. 2-groups category-theory higher-dimensional-algebra, and Higher-Dimensional
Algebra III: n-Categories and the Algebra of Opetopes (10 Feb 1997) [32]

• I.C. Baianu.2004. Complex Systems Analysis of Cell Cycling Models in Carcinogenesis., arXiv:q-bio/0406045v2
q-bio.OT [33]

• John C Baez, Aaron D Lauda. 2004. Higher-Dimensional Algebra V: 2-Groups. Theory and Applications of
Categories 12 (2004), 423-491. arXiv:math/0307200v3 -math.QA [34]

• G. L. Litvinov. The Maslov dequantization, idempotent and topical mathematics: A brief introduction.,
arXiv:math/0507014v1 math.GM [35]
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External links
• Ronald Brown's Home Page [36]

• Full list of Professor Ronald Brown's publications [37]

• Who's Who in Mathematics at Bangor University, UK [38]

• Mathematics Research - List of Mathematicians at Bangor [39]

Inline and on line citations
• The origins of Alexander Grothendieck's `Pursuing Stacks' [38] "This is an account of how `Pursuing Stacks' was

written in response to a correspondence in English with Ronnie Brown and Tim Porter at Bangor, which
continued until 1991."

• 1. Ronald Brown, J.-L. Loday, (1987). "Homotopical excision, and Hurewicz theorems, for n-cubes of spaces".
Proceedings London Mathematical Society 3 (54): 176–192. Proceedings London Mathematical Society 3 (54):
176–192. London Mathematical Society. [40]

• 2 Higher Dimensional Algebra citations list [28]

Recent citations on line
John C. Baez and Alissa S. Crans.2004, Higher-Dimensional Algebra VI: Lie 2-Algebras., Theory and Applications
of Categories 12 (2004), 492-528., as follows:
"*[11] R. Brown, Groupoids and crossed objects in algebraic topology., Homology, Homotopy and Applications 1
(1999), 1–78. Available at HHA (hha- ftp) website at Rutgers University, USA [41].
• [12] R. Brown and P. Higgins, Cubical abelian groups with connections are equivalent to chain complexes,

Homology, Homotopy and Applications, 5
(2003), 49–52.
• [13] R. Brown and C. B. Spencer, G-groupoids, crossed modules, and the classifying space of a topological

group, Proc. Kon. Akad. v. Wet. 79 (1976),296–302."
• M. A. Batanin Monoidal Globular Categories As a Natural Environment for the Theory of Weak n- Categories.,

Advances in Mathematics, Volume 136, Issue 1, 1 June 1998, Pages 39-103., doi:10.1006/aima.1998.1724 [42]
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